Loading...
机构名称:
¥ 1.0

摘要。试图使算法公平,机器学习文献主要集中在跨种族或性别群体之间的决策,结果或错误率平等。要说明,请考虑一个假设的政府乘车计划,该计划为即将到来的法院日期提供的低收入人士提供运输援助。遵循这些文献,可以将游乐设施分配给每美元估计效果最高的治疗效果的人,同时将支出限制为在种族群体之间相等。然而,这种方法忽略了这种约束的下游后果,因此会造成意外伤害。例如,如果一个人群群体居住在远离法院的情况下,则执行平等的支出必然意味着提供的总乘车总数较少,并且可能会因失踪法院而受到更多惩罚的人。在这里,我们提出了设计公平算法的替代框架,该算法预示了决策的后果。在我们的方法中,首先引起了利益相关者在可能的决策和由此产生的结果的方面的偏好,例如平衡支出平价与法院出庭率的偏好。然后,我们在决策政策的空间中进行了优化,以最大化引起的公用事业的方式进行权衡。为此,我们开发了一种算法,以从数据中从数据中有效地学习这些最佳策略的算法,以提供大量表达效用功能。尤其是,我们使用上下文的强盗算法来探索poli cies的空间,同时在每个步骤求解凸优化问题,以根据可用信息估算最佳策略。这种后果主义范式促进了公平决策的更霍利斯的方法。

公平决策的结果主义方法

公平决策的结果主义方法PDF文件第1页

公平决策的结果主义方法PDF文件第2页

公平决策的结果主义方法PDF文件第3页

公平决策的结果主义方法PDF文件第4页

公平决策的结果主义方法PDF文件第5页

相关文件推荐

2024 年
¥2.0
2021 年
¥1.0
2024 年
¥11.0
2021 年
¥1.0
2024 年
¥2.0
2022 年
¥1.0
2024 年
¥1.0