互联网拥塞控制(CC)长期以来在网络系统中提出了一个挑战控制问题,最近的方法越来越多地纳入了深度强化学习(DRL),以增强适应性和性能。尽管有希望,但基于DRL的CC方案通常会遭受公平性差,尤其是在培训期间未见的网络环境时。本文介绍了陪审团,这是一种基于DRL的新型CC计划,旨在实现公平性。At its heart, Jury decouples the fairness con- trol from the principal DRL model with two design elements: i) By transforming network signals, it provides a universal view of network environments among competing flows, and ii) It adopts a post-processing phase to dynamically module the sending rate based on flow bandwidth occupancy estima- tion, ensuring large flows behave more conservatively and smaller flows more aggressively, thus achieving a fair和平衡的带宽分配。我们已经完全实施了陪审团,广泛的评估证明了其在仿真和现实世界网络的广泛范围内的强大结合特性和高性能。
主要关键词