这项工作旨在在教学计划视频的背景下特别了解VideoQa的快速新兴领域。它还鼓励设计可以引起基于编程的自然语言问题的系统的设计。We introduce two datasets: Code- VidQA, with 2,104 question-answer pair with timestamps and links taken from programming videos extracted using Stack Overflow for Pro- gramming Visual Answer Localization task, and CodeVidCL with 4,291 videos (1751 pro- gramming, 2540 non-programming) for Pro- gramming Video Classification task.在广告中,我们提出了一个框架,该框架适应了Bigbird和SVM进行视频分类技术。所提出的方法实现了视频分类的奇特精度为99.61%。
主要关键词