Loading...
机构名称:
¥ 1.0

点击转换率(CVR)估计是许多推荐收入业务系统(例如电子商务和广告)的重要任务。从样本的角度来看,典型的CVR阳性sample通常会经过曝光的漏斗→单击→转换。由于缺乏未点击样本的事后标签,CVR学习任务通常仅利用点击样本,而不是所有暴露的样本,即单击率(CTR)学习任务。然而,在在线推断期间,在相同的假定暴露空间上估算了CVR和CTR,这会导致训练和推理之间的样本空间不一致,即样本选择偏置(SSB)。为了减轻SSB,以前的智慧建议设计新颖的辅助任务,以使CVR学习在未单击的培训样本(例如CTCVR和反事实CVR等)上。尽管在某种程度上减轻了SSB,但它们都不关注模拟过程中模棱两可的负样本(未点击)和事实负面样本(单击但未转换)之间的歧视,这使得CVR模型缺乏健壮性。为了充分的差距,我们提出了一个新颖的合唱模型,以实现整个空间中的CVR学习。我们提出了一个负面样本差异模块(NDM),该模块旨在提供可靠的软标签,并具有将事实负面样本(单击但未转换)与模棱两可的负面样本(未敲击)区分开的能力。此外,我们提出了一个软对准模块(SAM),以使用生成的软标签的几个对齐目标来监督CVR学习。在Kuaishou的电子商务实时服务上进行了广泛的离线实验和在线A/B测试,验证了我们ChorusCVR的功效。

由于空间磁场而引起的加速度噪声

由于空间磁场而引起的加速度噪声PDF文件第1页

由于空间磁场而引起的加速度噪声PDF文件第2页

由于空间磁场而引起的加速度噪声PDF文件第3页

由于空间磁场而引起的加速度噪声PDF文件第4页

由于空间磁场而引起的加速度噪声PDF文件第5页

相关文件推荐