解决方案建筑师,TATA咨询服务,美国摘要:生成人工智能(Gen AI)和机器学习(ML)技术正在改变保险行业的外观,尤其是通过整合AI&ML Technologies。作为财产和伤亡保险的领先平台,GuideWire为部署智能索赔处理工作流提供了一个理想的平台,这些平台可以显着提高效率,准确性和客户满意度。在本文中探讨了AI和ML能力与自主处理主张的无缝集成。保险公司可以使用高级模型来驱动能够自动化任务的自动驾驶工作流程,例如索赔分类,欺诈检测,损害评估和和解优化。,但最重要的是,这些技术降低了运营成本,并减少涉及的人类干预,以便可以更快地处理索赔。在这项工作中,我们讨论实施此类工作流程(例如数据集成,模型培训和道德AI实践)时需要考虑哪些技术和战略考虑因素。本文还展示了几种现实世界中的用例,每个用例中的挑战以及在业务方面扩展这些解决方案的潜力。在关注未来的情况下,自主索赔处理使保险公司通过提供创新的解决方案来改变其下一个竞争优势,从而改变客户的期望,同时有资格符合监管和合规标准。1.1。索赔中AI和ML提供支持的自动驾驶工作流是保险的未来及其改变索赔管理过程的能力。关键字:自动索赔处理,导丝,生成AI,机器学习,自动驾驶工作流程,自动化,欺诈检测,损害评估1.介绍保险业一直是使用创新技术来提高运营效率,提高客户满意度并降低成本的先驱。作为生成人工智能(Gen AI)和机器学习(ML),保险公司拥有一系列强大的工具来帮助自动化最复杂的过程,例如索赔管理。[1-4]这些技术有可能推动自动索赔处理的出现 - 与更传统的工作流相比,这可以更快地解决索赔解决方案并降低手动干预以及提高准确性。在本节中,我们将讨论索赔处理如何发展AI和ML的如何利用,以及如何将这些技术与GuideWire等平台集成在一起。当今索赔处理的演变,索赔处理一直是一项艰巨而过于密集的活动,传统上是基于验证,估值和解决方案的手动劳动。在某种程度上,过去几年的数字转型的出现并没有消除大部分人类参与索赔生命周期的必要性。通过删除监督需要处理整个工作流程完成完成的需求,自主索赔处理代表了允许自动驾驶过程的彻底出发。预计以准确性和合规性向效率转向,将为下一代保险服务创造能力。
主要关键词