Loading...
机构名称:
¥ 1.0

摘要 - 在线金融新闻的多种来源会影响市场的变动和交易者的决策。这强调了对准确的情感分析的必要性,除了拥有适当的算法交易技术之外,还需要做出更好的知情交易决策。标准词典的情感方法已经证明了他们在协助财务决策方面的权力。但是,众所周知,它们遭受与上下文灵敏度和单词顺序相关的问题。大型语言模型(LLM)也可以在这种情况下使用,但它们不是特定于金融的,并且倾向于需要大量的计算资源。为了促进特定于财务的LLM框架,我们介绍了一种基于Llama 2 7b基础模型的新方法,以便从其生成性质和综合语言操纵中受益。这是通过在一小部分监督财务情感分析数据上微调Llama2 7b模型来实现的,以共同处理金融词汇和环境的复杂性,并进一步为其提供基于神经网络的决策机制。这样的生成器分类器计划(称为Finllama)不仅受过培训,不仅是为了对情感造成分类,而且还量化了其实力,从而为交易者提供了对金融新闻文章的细微洞察力。补充这一点,通过洛拉(Lora)进行参数有效的微调实现,优化了可训练的参数,从而最大程度地降低了计算和内存需求,而无需牺牲准确性。索引术语 - 大语言模型,财务,情感分析,算法交易,参数有效的微调仿真结果证明了拟议中的Finllama提供了增强投资组合管理决策和增加市场收益的框架的能力。这些结果基于Finllama建造高回报投资组合的能力,即使在动荡的时期和不可预测的市场事件中,也表现出增强的弹性。

使用ML

使用MLPDF文件第1页

使用MLPDF文件第2页

使用MLPDF文件第3页

使用MLPDF文件第4页

使用MLPDF文件第5页

相关文件推荐

2023 年
¥3.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥2.0
2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
1900 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2022 年
¥3.0
2024 年
¥2.0
2024 年
¥1.0
2023 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2022 年
¥1.0