脑电图(EEG)广泛用于神经科学和临床研究中,用于分析大脑活性。虽然诸如EEG-NET之类的深度学习模型在解码EEG信号方面已经取得了成功,但它们经常在数据复杂性,受试者间的可变性和噪声鲁棒性方面挣扎。Quantum机器学习(QML)的最新进步通过利用量子计算的独特属性来增强脑电图分析的新机会。在这项研究中,我们扩展了先前提出的量子eegnet(QEEGNET),这是一种将量子层融合到EEGNET中的混合神经网络,以研究其在多个EEG数据集中的泛化能力。我们的评估涵盖了各种各样的认知和运动任务数据集,在不同的学习情况下评估了Qeegnet的表现。实验结果表明,尽管QEEGNET的表现具有竞争性能并在某些数据集中保持稳健性,但其对传统深度学习方法的改进仍然不一致。这些发现表明,混合量子古典体系结构需要进行更优化,以充分利用脑电图处理中的量子优势。尽管有这些局限性,但我们的研究为QML在脑电图研究中的适用性提供了新的见解,并强调了未来进步必须解决的挑战。
主要关键词