Loading...
机构名称:
¥ 1.0

在这项研究中,我们将Java作为编程语言,以及综合开发环境(IDE)作为文本编辑器,以及我们实施的Deeplearning4J库。这项研究是在具有以下规格的高端PC上进行的:具有双核CPU,16GB RAM和2TB的SSD存储的VP,由带有8个核心和512MB RAM的GPU补充。如表3所示,实验结果表明,健康移动应用中训练的神经网络引擎有效地检测到九种疾病中的六种,尽管它在鉴定心脏病方面的表现是次优的。尽管有这些限制设置,但仍需要进一步的改进来增强应用程序的有效性。我们为每种疾病选择了适当的神经网络模型,并在Android Studio中实施了它们。我们的目标是提供一个解决这些环境中挑战的应用程序,使患者有能力在管理健康方面发挥更为积极的作用。该应用程序可确保个人可以访问有关其健康状况的信息,无论地理障碍如何,并且简化了获得疾病诊断的过程,从而节省了时间和降低成本。这项初步研究强调了早期疾病检测和在资源贫乏的环境中积极健康管理的重要性。对于将来的工作,我们计划探索其他技术,例如支持向量机(SVM)和转移学习,以进一步验证神经网络的性能。在本研究中未进行现场测试时,我们认识到需要评估和验证应用程序对实际临床诊断的准确性,这将是即将进行的研究的重点。

早期检测的智能医疗系统

早期检测的智能医疗系统PDF文件第1页

早期检测的智能医疗系统PDF文件第2页

早期检测的智能医疗系统PDF文件第3页