Loading...
机构名称:
¥ 1.0

基于历史数据的决策支持算法将使人们的推荐受到过去不平等影响。详细的历史健康数据包含识别人口因素,例如种族,1个社会经济地位或宗教的模式。这些因素与社会劣势有关,因此与不平等的健康结果间接相关。在此类数据上训练的机器学习或统计模型将能够识别这些模式,并将不平等的结果与这些缺陷组相关联,即使没有明确记录数据中的人口统计信息。1 2如果间接关联后来影响决策支持算法,则有可能在不知不觉中造成进一步的缺点并加剧社会不平等。2当算法的行为不透明,嵌入“黑匣子”并用来影响健康,教育,就业或正义领域的决策时,社会不平等的加强是最高风险的。3

临床决策和算法不等式

临床决策和算法不等式PDF文件第1页

临床决策和算法不等式PDF文件第2页

临床决策和算法不等式PDF文件第3页