Loading...
机构名称:
¥ 1.0

1。在此提案中,针对哪些特定类型的偏见(例如性别,种族,文化)?答案:任何形式的社会偏见。2。的重点是否应该放在减轻培训数据,模型设计或输出中的偏见或三个?答案:这些子集。3。在缓解偏见和保持准确性之间应优先考虑什么平衡,以及这种平衡应与该提案的主要重点保持一致?答案:由表演者定义偏见准确权衡4。哪种类型的符号表示与该项目最相关(例如语法,本体,基于逻辑的系统),以及它们如何专门解决偏见?答案:其中任何一个都可以。他们如何特别解决偏见取决于表演者的提议。5。哪些神经体系结构是首选或最适用于该建议(例如变形金刚,经常性网络),为什么它们适合减轻偏见?答案:任何具有相关应用程序的模型,例如注意网络,堪萨斯州,LRMS…6。是否有任何首选数据集或应用程序域(例如,文本,图像,语音)来证明缓解偏差,还是该提案应涵盖多个域?答案:没有偏好7。概念验证是否应集中于重新训练现有的AI模型,还是提出主要修改或约束推理过程(例如解码)的方法是可以接受的?答案:两者都处于范围。8。答案:由表演者定义这些指标取决于表演者。在此提案中应如何衡量在缓解明确和隐性偏见方面的成功,并且是否建议进行评估的特定指标或基准?

HR0011ST2025D-02缓解显式和隐性偏见...

HR0011ST2025D-02缓解显式和隐性偏见...PDF文件第1页

HR0011ST2025D-02缓解显式和隐性偏见...PDF文件第2页

HR0011ST2025D-02缓解显式和隐性偏见...PDF文件第3页