Loading...
机构名称:
¥ 1.0

指标,例如网络大小,培训时间和生成数据的质量。此外,还研究了潜在的数学,并与gan和vaes的理论基础有关。2。相关的生成模型近年来一直是机器学习领域的重要研究的主题,具有生成的对抗网络(GAN)和变异自动编码器(VAE)是两种最广泛使用的技术。几项研究比较了gan和vaes在不同的数据集和应用程序上的性能,其中一些报道了gan的结果更好(Karras等,2019),而其他人则报告了VAE的更好结果(Bowman等,2019)。该领域最有影响力的论文包括Goodfellow等人。的(2014年)引入了GAN框架,以及Kingma and Welling(2014)的VAE框架的引入,这些框架已在随后的作品中广泛引用。Salimans等。的(2016)论文提出了稳定gan训练的技术,例如为发电机和歧视者使用不同的学习率,而Chen等人。(2016)提出了对GAN框架的修改,该修改允许学习可解释的表示形式。Mescheder等。的(2017)论文提出了一个结合了VAE和gans强度的混合模型,以及Arjovsky等。的(2017)论文提出了对GAN框架的修改,该框架将Wasserstein距离用作目标函数,从而进行了更稳定的训练。Kumar等。 3。 每个Kumar等。3。每个的(2019年)论文提出了对GAN框架的修改,该框架在歧视者中引入了瓶颈,从而提高了性能,而Shen等人则进行了改善。的(2020)论文提出了一种在gan的潜在空间中发现可解释方向的方法,从而可以控制生成的图像的特定属性。方法论3.1数据集我们从MNIST数据集中应用了60,000张培训照片和10,000个手写数字的测试图像。

gan和vaes的比较分析在产生高质量的

gan和vaes的比较分析在产生高质量的PDF文件第1页

gan和vaes的比较分析在产生高质量的PDF文件第2页

gan和vaes的比较分析在产生高质量的PDF文件第3页

gan和vaes的比较分析在产生高质量的PDF文件第4页

gan和vaes的比较分析在产生高质量的PDF文件第5页

相关文件推荐