Loading...
机构名称:
¥ 1.0

引言超声超声(每秒> 5000帧)在过去20年中的出现,通过增加的计算能力和平行接收电子设备来实现,刺激了生物医学超声的multiple成像模式的发展(1,2)。在短(<1 ms)的时间窗口内的完整图像的形成可以准确地量化组织,血液和对比度运动。这促进了组织弹性和动脉刚度的测量(3,4),通过定位和跟踪单个微泡(5,6)的序列分辨率(5,6),并在广泛的视野(7)上大大增强了血液的成像。后者导致功能性超声成像(FUS或FUSI)的出现,一种神经影像学技术,能够检测到神经血管偶联引起的脑血容量的小变化(8,9)。与其他神经影像模式(例如功能磁共振成像)相比,FUS在较低的成本下提供了更大的易用性,同时提供了更高的时空重置,并且最近的演示与对比度相结合,可与6.5- spatial spatialssolution(10)相结合,以检测其能力。超声超声成像主要仍然是二维(2D)技术。此成像过程需要以高框架速率(≥5kHz)的一系列平面或分化波传输,同时记录以nyquist速率在空间和时间上采样的反向散射信号(1)。在3D成像的情况下,通常需要数千个元素(2D成像为64至256)和具有相关射频数字数字的相应数量的独立数据通道。最近的工作报告了3/4D心脏想象的1024个通道系统(11,12),超分辨率(13,14)和大鼠的功能成像(15)。但是,这些需要使用和同步

脑血流动力学的四维计算超声成像

脑血流动力学的四维计算超声成像PDF文件第1页

脑血流动力学的四维计算超声成像PDF文件第2页

脑血流动力学的四维计算超声成像PDF文件第3页

脑血流动力学的四维计算超声成像PDF文件第4页

脑血流动力学的四维计算超声成像PDF文件第5页

相关文件推荐

2022 年
¥8.0
2020 年
¥2.0
2022 年
¥1.0
2024 年
¥1.0
2016 年
¥12.0
2000 年
¥1.0
2025 年
¥1.0