高管摘要随着技术的发展,人们越来越依赖互联网。在线平台,例如搜索引擎,电子商务网站,社交媒体和按需服务已成为数百万人生的重要性。这些平台利用算法和机器学习通过自动决策(ADM)为用户提供个性化体验。尽管具有有效的性质,但与这些ADM相关的歧视和行为操纵仍然存在。本文的重点是欧盟的方法来解决在在线平台中使用ADM引起的歧视和操纵行为的方法。本论文的主要研究问题是:“目前的欧盟数据保护法律框架以及拟议的人工智能调节,足以解决在在线平台上使用的自动决策(ADM)引起的歧视和操纵行为?”要回答这个问题,论文依赖于书面研究。它主要分析一般数据保护法规(GDPR)和拟议的人工智能法(AIA),以解决法规的充分性,以防止在线平台上ADM引起的歧视和操纵行为。论文揭示了ADM是一种通过基于规则或机器学习算法等基本技术来自动化个人决策的系统。尽管ADM提供了有效的结果,但它有可能带有偏见,产生不准确的结果以及推断有关个人可能导致行为操纵和歧视的数据的数据。本论文区分了在线平台上有问题的行为操纵实践,发现在有问题的方面存在道德上可接受的操纵实践,包括个性化建议,例如利用个人脆弱性的个性化广告。对于歧视性实践,它突出了两个有问题的领域:基于受保护特征的歧视,例如种族和基于非保护特征的歧视,例如社会经济地位。论文研究了GDPR和AIA,并探讨了如何调节使用ADM引起的行为的歧视和操纵。GDPR通过禁令进行监管,并使个人有权获得信息和访问权利的权利。相比之下,AIA 专注于潜在技术,并调节其对个人的影响。 本文发现,不需要新的法规来解决在在线平台中使用的ADM引起的行为的歧视和操纵。 但是,它为GDPR和AIA提供了明确而全面的规则的建议。 对于GDPR,本文建议根据第22条第1款GDPR的ADM规则明确,并将最低保障措施加入第22(3)条GDPR以增加保护。 对于第13,14条和15 GDPR,对所使用的概念的清晰度以及在前委员会和事前信息之间有明确的区别,以包括以用户为中心的透明度。专注于潜在技术,并调节其对个人的影响。本文发现,不需要新的法规来解决在在线平台中使用的ADM引起的行为的歧视和操纵。但是,它为GDPR和AIA提供了明确而全面的规则的建议。对于GDPR,本文建议根据第22条第1款GDPR的ADM规则明确,并将最低保障措施加入第22(3)条GDPR以增加保护。对于第13,14条和15 GDPR,对所使用的概念的清晰度以及在前委员会和事前信息之间有明确的区别,以包括以用户为中心的透明度。对于AIA,有五个建议,其中包括一个明确的AI系统定义,该定义确认了基础技术,推荐系统的定义,添加了非常大的在线搜索引擎,以实现完整的在线平台表示,对重要的
主要关键词