Loading...
机构名称:
¥ 2.0

其次,在ID插入后,它仍应保留原始T2i模型遵循提示的能力。在ID自定义的上下文中,这通常意味着更改ID属性的能力(例如,年龄,性别,表情和头发),方向和配件(例如,眼镜)通过提示。为了获得这些功能,当前的解决方案通常分为两类。第一类涉及增强编码器。iPadapter [50,1]从网格特征的早期剪辑提取到利用面部识别主链[6]来提取更多抽象和相关的ID信息。尽管提高了编辑性,但ID保真度不够高。InstantID [44]通过在此基础上包括一个额外的ID和Landmark ControlNet [52]以进行更有效的调制。即使ID相似性大大提高,它也会损害某种程度的编辑性和灵活性。第二类方法[22]支持非重构培训,以通过构造由ID分组的数据集来增强编辑性;每个ID都包含几张图像。但是,创建此类数据集需要巨大的努力。此外,大多数ID对应于有限数量的名人,这可能会限制其对非赛车的有效性。

通过对比度对齐

通过对比度对齐PDF文件第1页

通过对比度对齐PDF文件第2页

通过对比度对齐PDF文件第3页

通过对比度对齐PDF文件第4页

通过对比度对齐PDF文件第5页

相关文件推荐