摘要:确定暴力活动对于确保社会的安全很重要。尽管变压器模型对行为识别领域有很大贡献,但通常需要大量数据才能表现良好。由于目前缺乏现有的有关暴力行为的数据集,因此对于变形金刚使用数据集不足的暴力行为来说,这将是一个挑战。此外,已知变压器在计算上是沉重的,有时可能会忽略时间特征。为了克服这些问题,可以使用名为MLP-Mixer的架构使用较小的数据集来获得可比的结果。在这项研究中,提出了一种特殊类型的数据集,该数据集提出了一个称为顺序图像拼贴(SIC)的MLP混合物。此数据集是通过将视频剪辑的框架汇总到图像拼贴中来创建的,以便更好地了解视频中暴力行为的时间特征。三个不同的公共数据集,即国家曲棍球联盟曲棍球战斗的数据集,智能城市CCTV暴力检测的数据集以及现实生活中暴力情况的数据集用于培训该模型。实验的结果证明,与其他最先进的模型相比,使用所提出的SIC训练的模型能够以较少的参数和触发能力在暴力行为识别中实现高性能。
主要关键词