其中f∈Cr(lr d,lr d),r≥1。对于符号,对于任何x∈Lrd,c∈LR,我们让b(x,c)= {ξ∈Lrd:| ξ -x | 假设x 0是(7.1)的平衡点。 我们说x 0是稳定的,如果对于任何ǫ> 0,则有一个δ> 0,因此,如果ξ∈B(x 0,δ),则t(ξ)∈B(x 0,ǫ)对于t≥0。 我们说,如果x 0不稳定,则不稳定。 我们说,如果存在常数b> 0,x 0会吸引本地点,以便如果ξ∈B(x 0,b),则| ϕ t(ξ) - x 0 | →0作为T→∞;也就是说,对于任何η> 0和任何ξ∈B(x 0,b),对于t≥t0(η,ξ),具有ϕ t(η,ξ)的t 0(η,ξ)。 我们说,如果存在常数的c> 0,我们说x 0是局部吸引子,使得(ϕ t(b(x 0,c),c),x 0)→0 as t→∞;也就是说,对于任何η> 0,与ηt 0(η)有关,则属性,如果ξ∈B(x 0,c),则为ϕ b(x 0,c),ϕ t(x 0,ϕ t(ϕ t(ϕ temend))0. 如果x 0具有任何有限的集合b lr d的属性,则我们的dist(ϕ t(b),x 0)→0 as t→∞,则我们说x 0是(7.1)的全局吸引子。 迫使我们对这些定义进行一些思考,让我们详细考虑图7.1中描述的流量的原点的稳定性。 我们不编写方程式,而只是假设有一个方程式是流动的方程式(可以证明确实存在这样的方程式)。假设x 0是(7.1)的平衡点。我们说x 0是稳定的,如果对于任何ǫ> 0,则有一个δ> 0,因此,如果ξ∈B(x 0,δ),则t(ξ)∈B(x 0,ǫ)对于t≥0。我们说,如果x 0不稳定,则不稳定。我们说,如果存在常数b> 0,x 0会吸引本地点,以便如果ξ∈B(x 0,b),则| ϕ t(ξ) - x 0 | →0作为T→∞;也就是说,对于任何η> 0和任何ξ∈B(x 0,b),对于t≥t0(η,ξ),具有ϕ t(η,ξ)的t 0(η,ξ)。我们说,如果存在常数的c> 0,我们说x 0是局部吸引子,使得(ϕ t(b(x 0,c),c),x 0)→0 as t→∞;也就是说,对于任何η> 0,与ηt 0(η)有关,则属性,如果ξ∈B(x 0,c),则为ϕ b(x 0,c),ϕ t(x 0,ϕ t(ϕ t(ϕ temend))0. 如果x 0具有任何有限的集合b lr d的属性,则我们的dist(ϕ t(b),x 0)→0 as t→∞,则我们说x 0是(7.1)的全局吸引子。 迫使我们对这些定义进行一些思考,让我们详细考虑图7.1中描述的流量的原点的稳定性。 我们不编写方程式,而只是假设有一个方程式是流动的方程式(可以证明确实存在这样的方程式)。我们说x 0是局部吸引子,使得(ϕ t(b(x 0,c),c),x 0)→0 as t→∞;也就是说,对于任何η> 0,与ηt 0(η)有关,则属性,如果ξ∈B(x 0,c),则为ϕ b(x 0,c),ϕ t(x 0,ϕ t(ϕ t(ϕ temend))0.如果x 0具有任何有限的集合b lr d的属性,则我们的dist(ϕ t(b),x 0)→0 as t→∞,则我们说x 0是(7.1)的全局吸引子。迫使我们对这些定义进行一些思考,让我们详细考虑图7.1中描述的流量的原点的稳定性。我们不编写方程式,而只是假设有一个方程式是流动的方程式(可以证明确实存在这样的方程式)。