Loading...
机构名称:
¥ 2.0

摘要。重要的是要理解诸如劳动,种子,灌溉,杀虫剂,肥料和肥料成本等运营费用之间的关系。种植农作物的精确成本可以为农业决策提供重要的信息。该研究的主要目标是比较机器学习(ML)技术,以衡量在生长季节开始之前使用农业部和印度政府农民福利提供的数据集在生长季节开始之前预测作物种植成本的关系。本文介绍了各种ML回归技术,比较了各种学习算法,并根据数据集,样本和属性来确定最有效的回归算法。用于预测1680个实例成本的数据集包括12年(2010- 2011年至2021 - 2022年)的14种不同作物的不同成本。考虑了十种不同的ML算法,并预测了农作物培养成本。评估结果表明,随机森林(RF),决策树(DT),扩展梯度提升(XR)和K-Neighbours(KN)回归在确定系数(R 2),均方根误差(RMSE)和训练时间时提供了更好的性能。这项研究还比较了不同的ML技术,并使用方差统计分析(ANOVA)检验显示出显着差异。关键字:机器学习,农作物种植成本,预测,ANOVA,GRIDSEARCHCV,RANCTAL SEARCHCV。使用GridSearchCV和随机搜索功能找到了ML模型的最佳超参数,从而提高了模型的泛化能力。

基于机器学习的推断作物种植成本

基于机器学习的推断作物种植成本PDF文件第1页

基于机器学习的推断作物种植成本PDF文件第2页

基于机器学习的推断作物种植成本PDF文件第3页

基于机器学习的推断作物种植成本PDF文件第4页

基于机器学习的推断作物种植成本PDF文件第5页