至关重要的是,自动构建各种新关系的知识图(kg),以支持知识发现和广泛的应用。基于众包或文本挖掘的以前的KG施工方法通常仅限于由于手动成本或文本语料库的限制而限于一组预定义的关系集。最新的研究提议使用验证的语言模型(LMS)作为内隐知识基础,这些知识基础接受了提示的知识查询。然而,隐性知识缺乏全面象征性kg的许多理想特性,例如易于访问,导航,编辑和质量保证。在本文中,我们提出了一种新的方法,以从验证的LMS中收集任意关系的群体。使用关系定义的最小输入(提示和一些示例实体对的镜头),该方法有效地在庞大的实体对空间中有效地搜索,以提取对所需关系的各种准确的了解。我们开发了一种有效的搜索和验证机制,以提高效率和准确性。我们部署了从不同LMS收获400多个新关系的kgs的方法。广泛的人类和自动评估表明,我们的方法设法提取了各种准确的知识,包括复杂关系的元素(例如,“ A具有但不擅长B”)。作为源LM的符号解释所产生的kg还揭示了对LMS知识能力的新见解。
主要关键词