Loading...
机构名称:
¥ 1.0

似乎我们的大脑使视觉识别非常容易。对于人类而言,不需要任何努力,可以看到狗和猫,汽车和飞机之间的区别,读取标志或识别人的脸。但是,计算机视觉和图像识别又如何容易地解决计算机的图像识别问题?绝对不是,实际上有一些困难的问题,需要解决,以教授计算机识别图像:它们仅用于初次视图很容易,我认为这是因为我们的大脑非常擅长理解图像。但是,试想一下,使用计算机视觉可以改善人类生活的多少领域。最常见的使用领域是制造业,例如质量控制,当您开始制造业务时,您需要质量控制部门,但是如果使用计算机视觉替换该部门,该怎么办,涉及更多的人创造一些新事物,我认为这项业务将更加有利可图。这就是为什么,最近几年的机器学习领域在计算机视野领域取得了巨大进展。这一进度的要点是创建用于图像识别的数学方法,这将为我们带来很高的精度结果。如今,最受欢迎的是IR,特别是卷积神经网的深度学习技术,此方法比傅立叶变换(例如傅立叶变换)更先进。通过这些技术,通过涉及该领域的深度学习方法,可以实现这些技术的显着提高准确性。准确率接近95%。(通常是根据人类对数据集进行分类的方式来测量的。)因此,请记住,如果您没有研究基于深度学习的图像识别和对象检测

计算机视觉和图像分析技术的分析

计算机视觉和图像分析技术的分析PDF文件第1页

计算机视觉和图像分析技术的分析PDF文件第2页

计算机视觉和图像分析技术的分析PDF文件第3页

计算机视觉和图像分析技术的分析PDF文件第4页

计算机视觉和图像分析技术的分析PDF文件第5页