Loading...
机构名称:
¥ 1.0

玉米的发展和生产力是全世界重要的农作物,可能会因几种营养缺陷而阻碍。如果我们想增加玉米输出,我们需要快速找到这些问题。这项研究提出了一种通过分析叶片照片来鉴定玉米植物中营养缺陷的详尽方法。我们的方法将深度学习算法与常规机器学习方法结合在一起,以分析和从这些图片中提取信息。所检查的四种营养缺乏症是锌(Zn),钾(K),氮(N)和磷(P)。标准机器学习方法使用Gabor,离散小波变换,局部二进制模式和灰度级别的共发生矩阵(GLCM)。然后,使用诸如支持向量机(SVM),决策树和梯度提升等算法进行分类。根据我们的实验数据,机器学习算法成功地诊断了玉米植物中的营养缺陷。这项研究的结果突出了通过更好的植物营养管理来提高农业产量的机器学习算法的希望。农民和农业专家可能会大大受益于自动图像分析,这些图像分析可以快速,正确地识别玉米植物中的营养缺陷。这项技术有可能在全球范围内为食物的可持续性和安全做出贡献。

使用...

使用...PDF文件第1页

使用...PDF文件第2页

使用...PDF文件第3页

使用...PDF文件第4页

使用...PDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥8.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥2.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥5.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0