Loading...
机构名称:
¥ 2.0

我们提出了无模拟分数和流匹配([SF] 2 m),这是一种用于推断自随机动力学的无模拟Objective,给出了从任意源和目标分布中绘制的未配对样品。我们的方法一般 - 扩散模型训练中使用的得分匹配损失以及最近提出的流量匹配损耗用于训练连续归一化流量。[SF] 2 m将连续的随机构成建模为Schrödinger桥概率。它依赖于静态熵调查的最佳传输或Minibatch近似,以有效地学习SB,并使用模拟学习的随机过程。我们发现[SF] 2 m更有效,并且比先前的工作中基于仿真的方法为SB问题提供了更准确的解决方案。最后,我们将[SF] 2 m应用于快照数据学习细胞动力学的问题。值得注意的是,[SF] 2 m是在高维度中准确模拟细胞dynamics的第一种方法,并且可以从模拟数据中恢复已知的基因调节网络。我们的代码可在https://github.com/ atong01/conditional-flow-matching的TorchCFM软件包中找到。

通过得分和流匹配

通过得分和流匹配PDF文件第1页

通过得分和流匹配PDF文件第2页

通过得分和流匹配PDF文件第3页

通过得分和流匹配PDF文件第4页

通过得分和流匹配PDF文件第5页

相关文件推荐

2024 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0