人工智能(AI)在数据驱动的状态监测研究中不断升级。传统的基于专家知识的预测和健康管理(PHM)过程可以借助各种AI技术(例如深度学习模型)变得更加智能。另一方面,当前基于深度学习的预测存在数据缺失问题,尤其是考虑到实际工业应用中组件的不同操作条件和退化模式。随着仿真技术的发展,基于物理知识的数字孪生模型使工程师能够以较低的成本访问大量仿真数据。这些模拟数据包含组件的物理特性和退化信息。为了准确预测退化过程中的剩余使用寿命(RUL),本文基于现象学振动模型构建了轴承数字孪生模型。使用领域对抗神经网络 (DANN) 来实现模拟和真实数据之间的领域自适应目标。将模拟数据视为源域,将真实数据视为目标域,DANN 模型能够在没有任何标记信息先验知识的情况下预测 RUL。基于实际轴承运行至故障实验的验证结果,与最先进的方法相比,所提出的方法能够获得最小的 RUL 预测误差。