亚马逊Q业务的准确评估框架 - 第2部分

在本系列的第一篇文章中,我们引入了Amazon Q Business的全面评估框架,Amazon Q Business是一个完全管理的检索增强发电(RAG)解决方案,该解决方案使用了您公司的专有数据,而没有管理大型语言模型(LLMS)的复杂性。第一篇文章着重于选择适当的用例,准备数据并实施指标[…​​]

来源:亚马逊云科技 _机器学习
在本系列的第一篇文章中,我们引入了Amazon Q Business的全面评估框架,Amazon Q Business是一个完全管理的检索增强发电(RAG)解决方案,该解决方案使用了您公司的专有数据,而没有管理大型语言模型(LLMS)的复杂性。第一篇文章着重于选择适当的用例,准备数据并实施指标来支持人类的评估过程。在这篇文章中,我们深入研究了为您的Amazon Q Business Application实施此评估框架所必需的解决方案体系结构。 We explore two distinct evaluation solutions:Comprehensive evaluation workflow – This ready-to-deploy solution uses AWS CloudFormation stacks to set up an Amazon Q Business application, complete with user access, a custom UI for review and evaluation, and the supporting evaluation infrastructureLightweight AWS Lambda based evaluation – Designed for users with an existing Amazon Q Business application, this streamlined solution employs an AWS Lambda function to efficiently assess the application’s accuracyBy the end of this post, you will have a clear understanding of how to implement an evaluation framework that aligns with your specific needs with a detailed walkthrough, so your Amazon Q Business application delivers accurate and reliable results.Challenges in evaluating Amazon Q BusinessEvaluating the performance of Amazon Q Business, which uses a RAG model, presents several challenges due to its integration of retrieval and generation components.确定解决方案需求评估的哪些方面至关重要。对于亚马逊Q业务而言,检索准确性和答案输出质量都是要评估的重要因素。在本节中,我们将讨论需要包含在抹布生成AI解决方案的关键指标。ContextRecellContext召回召回衡量检索所有相关内容的程度。高召回提供了全面的信息收集,但可能会引入Extran