摘要:随着近年来人们对使用溶菌噬菌体作为治疗剂的兴趣日益浓厚,迫切需要了解它们的基本生物学,以便对其基因组进行工程改造。目前的噬菌体工程方法依赖于同源重组,然后通过选择系统来识别重组噬菌体。对于 T7 噬菌体,宿主基因 cmk 或 trxA 已被用作选择机制,以及 I 型和 II 型 CRISPR 系统,以对抗野生型噬菌体并富集所需的突变体。在这里,我们系统地比较了这三个系统;我们表明使用基于标记的选择是最有效的方法,我们使用这种方法来生成多个 T7 尾纤维突变体。此外,我们发现在噬菌体 T7 的工程改造中,II 型 CRISPR-Cas 系统比 I 型系统更易于使用,并且通常更有效。这些结果为未来更有效地改造噬菌体 T7 奠定了基础。
抗生素治疗会对微生物群产生有害影响并导致抗生素耐药性。为了开发一种针对多种临床相关的大肠杆菌的噬菌体疗法,我们筛选了一个包含 162 种野生型 (WT) 噬菌体文库,确定了 8 种对大肠杆菌具有广泛覆盖度、与细菌表面受体互补结合并能稳定携带插入货物的噬菌体。选定的噬菌体经过尾纤维和 CRISPR-Cas 机制改造,以专门针对大肠杆菌。我们发现,工程噬菌体可以靶向生物膜中的细菌,减少噬菌体耐受性大肠杆菌的出现,并在共培养实验中胜过其祖先 WT 噬菌体。四种最具互补性的噬菌体的组合,称为 SNIPR001,在小鼠模型和小型猪中均具有良好的耐受性,并且比单独的组成部分更好地减少小鼠肠道中的大肠杆菌负荷。 SNIPR001 目前正在临床开发中,旨在选择性杀死大肠杆菌,大肠杆菌可能会导致血液癌症患者出现致命感染。
巨型噬菌体(例如铜绿假单胞菌)具有抗菌剂的潜力,也是揭示基本噬菌体生物学的模型。目前,由于蛋白质的“噬菌体核”结构,这两种追求都受到缺乏基因工程工具的限制,该结构可保护DNA靶向DNA靶向CRISPR-CAS工具。为了提供用于DNA巨型噬菌体的逆转苯二酚工具,我们将同源重组与靶向RNA的CRISPR-CAS13A酶相结合,并使用了抗Crispr基因(ACRVIA1)作为可选标记。我们表明,此过程可以插入外源基因,删除基因并为μkz基因组添加荧光标签。内源性GP93的荧光标记表明,它是用噬菌体DNA弹出的,而小管蛋白样蛋白phuz的缺失令人惊讶地对噬菌体爆发尺寸产生了适中的影响。还实现了抗DNA靶向CRISPR-CAS系统的另外两个噬菌体的编辑。靶向RNA CAS13A具有成为一种通用遗传编辑工具的巨大前景,可以实现对未知功能的噬菌体基因的系统研究。
使用氯化锌沉淀法(7)从高滴度裂解物中提取 DNA,使用 NEBNext Ultra II 试剂盒(New England Biolabs,马萨诸塞州伊普斯威奇)制备用于测序,并使用匹兹堡噬菌体研究所(宾夕法尼亚州匹兹堡)的 Illumina MiSeq 仪器(v3 试剂)进行测序。对总共 1,056,847 个单端 150 bp 读数进行 9,214 倍覆盖度的测序。分别使用 Newbler v2.9 和 Consed v29.0 进行组装和质量控制检查(8, 9)。PineapplePizza 的基因组有 16,662 个碱基对,G + C 含量为 53.6%。没有测序读数超出基因组末端,基因组末端的 101 bp 反向重复与共价结合的末端蛋白一致,如 phi29(10)。使用 NCBI BLASTn (11) 进行全基因组比对,结果显示与其他 Microbacterium 噬菌体无显著的核苷酸序列相似性,PineapplePizza 被归类为单一基因。使用 Glimmer v3.02 (12) 和 GeneMark v2.5 (13) 自动注释 PineapplePizza 的基因组,然后使用 Phamerator (14)、DNA Master v5.23.6 ( http://phagesdb.org/DNAMaster/ )、PECAAN、BLAST (11) 和 HHPred (15) 手动细化。Aragorn v1.2.38 (16) 或 tRNAscan-SE v2.0 (17) 未鉴定出 tRNA 基因。所有分析均使用默认设置进行。
摘要STL是金黄色葡萄球菌致病岛(SAPIS)的主要阻遏物,靶向噬菌体编码的蛋白质来进行过度加压,并同步SAPI和辅助噬菌体生命周期。为了激活其循环,一些SAPI STL靶向噬菌体二聚体和噬菌体三聚体dutpass(DUT)作为抗压迫剂,它们是结构上无关的蛋白质,这些蛋白质对噬菌体执行相同的功能。SAPI的阻遏物与噬菌体诱导剂之间的这种紧密联系对STL进行了进化优化,从而允许与无关生物体的DUT相互作用。在这项工作中,我们通过与原型Sapibov1 STL的结构与原型和真核生物三聚合物进行了结构来表征这种复杂的专业化机制。与结核分枝杆菌和智人的杂膜复合物显示了STL的分子策略,以靶向来自不同王国的三聚体。我们的结构结果证实了三聚体在STL结合中的五个催化基序的参与,包括通过拥抱STL来增加因素的C末端活跃基序V。在有机硅和体外分析中,单次DUT支持STL认识到第三个DUT家族的能力,并确认该蛋白在不同王国的生活中是一种普遍的DUT抑制剂。
au:PleaseconfirnheadingLevelsarerePresentedCorrected:CRISPR介导的干扰依赖于指导性CRISPR RNA(CRRNA)和靶核酸之间的互补性,以提供防御噬菌体的防御。噬菌体逃脱了基于CRISPR的免疫力,主要是通过邻接基序(PAM)和种子区域中的突变。然而,包括2类核酸内切酶Cas12a在内的CAS效应子的先前特异性研究表明,单个不匹配的耐受性很高。在噬菌体防御的背景下,尚未对这种不匹配公差的效果进行广泛的研究。在这里,我们测试了针对由Cas12a-CrrNA提供的lambda噬菌体的防御,该噬菌体含有含有先前存在的对基因组DNA中基因组靶标的不匹配。我们发现大多数先前存在的crrna不匹配导致噬菌体逃脱,无论在体外是否不匹配消融cas12a裂解。我们使用高通量测序来检查CRISPR挑战后噬菌体基因组的目标区域。在目标中的所有位置的不匹配均加速了突变噬菌体的出现,其中包括不匹配的不匹配,这些不匹配大大减慢了体外的裂解。出乎意料的是,我们的结果表明,PAM距离区域中存在的错误匹配导致目标的PAM-DISTAL区域中选择突变。体外裂解和噬菌体竞争分析表明,双Pam-Distal错误匹配比种子和Pam-Distal mis-grountes的组合要高得多,从而导致了这种选择。这些结果表明,CAS效应不匹配的耐受性,现有的靶标匹配和裂解位点强烈影响噬菌体的演变。但是,使用CAS9的类似实验并未导致PAM-DISTAL不匹配的出现,这表明切割位置的位置和随后的DNA修复可能会影响目标区域内逃生突变的位置。多种不匹配的CRRNA的表达阻止了新的突变在多个靶向位置产生,从而允许CAS12A不匹配的耐受性提供更强,更长期的protection。
构建编码肠杆菌噬菌体T3(噬菌体T3)SSB蛋白蛋白(1-232AA)的质粒是表达重组型噬菌体T3(噬菌体T3)SSB蛋白蛋白的一般方法的第一步。然后将质粒转化为大肠杆菌细胞。阳性大肠杆菌细胞并培养,诱导蛋白质表达,并裂解细胞。蛋白质与N末端6XHIS-SUMO标签融合。然后通过亲和力纯化纯化所得的重组肠杆菌噬菌体T3(T3)SSB蛋白蛋白,并进行SDS-PAGE分析以验证并评估蛋白质的纯度。其纯度超过90%。
由于对关键矿物质的需求不断升高和可用矿石的降低,硫化物矿石的经济复苏已成为越来越多的兴趣的话题。生物无用的是使用嗜酸铁和硫酸氧化微生物来促进从原发性硫化物矿石和尾矿中提取碱金属。一个重要的问题限制了生物介绍的使用是由于这些微生物对氯化物的敏感性,因此淡水的可用性。使用盐水耐酸铁和硫氧化微生物将对解决此问题有很大帮助。有三种可能的方法来采购合适的微生物;适应性,基因工程和生物培训,生物镜头显示最大的可能性。生物培训以寻找生物渗透行动的本地生物,已导致研究人员进入世界各地的许多地方,并且在这些研究中尤其感兴趣的是能够耐受盐度的铁和氧化嗜酸菌的分离。
某些病毒(如带尾噬菌体和单纯疱疹病毒)通过强大的环状分子马达将双链 DNA 包装到空的衣壳中。噬菌体 Φ 29 的 DNA 包装马达的高分辨率结构和力测量表明,其五个 ATPase 亚基相互协调 ATP 水解,以维持环上 DNA 易位步骤的正确循环序列。在这里,我们探索 Φ 29 马达如何通过跨亚基相互作用定时关键事件(即 ATP 结合/水解和 DNA 抓取)来调节易位。我们使用与 DNA 结合的亚基二聚体作为我们的模型系统,这是一个最小系统,仍然可以捕捉完整五线运动复合体的构象和跨亚基相互作用。全 ATP 和混合 ATP-ADP 二聚体的分子动力学模拟表明,一个亚基的核苷酸占有率通过改变其催化谷氨酸接近 ATP 的伽马磷酸盐的自由能景观,强烈影响其水解相邻亚基中 ATP 的能力。具体而言,一个 ATP 结合亚基会提供反式残基,从而在空间上阻断相邻亚基的催化谷氨酸。当第一个亚基水解 ATP 并与 ADP 结合时,这种空间障碍就会得到解决。这种阻碍机制得到了功能性诱变的支持,并且似乎在几个 Φ 29 亲属中是保守的。对我们的模拟进行相互信息分析,揭示了通过反式阻断残基的亚基间信号通路,这些通路允许相邻亚基的结合口袋之间进行感知和通信。这项工作表明,通过新的反式亚基相互作用和通路,亚基之间的 DNA 易位事件的顺序得以保留。
在沙门氏菌中多药耐药性的出现,引起食物传播感染,是一个重大问题。在沙门氏菌中有超过2,600种血清射手,至关重要的是为每种血清的特定溶液确定特定溶液。噬菌体疗法是另一种治疗选择。在这项研究中,VB_SALP_792噬菌体是从污水中获得的,在13个经过测试的临床S.肠分离株中,有8个形成斑块。透射电子显微镜(TEM)检查显示出T7样形式。噬菌体的特征是食物来源中其稳定性,生命周期,抗生素和裂解能力。噬菌体在整个温度(-20至70°C),pH值(3-11)以及氯仿和乙醚中保持稳定。它还在0.0001至100的MOI范围内表现出裂解活性。生命周期表明,在3分钟内附着在宿主上的噬菌体中有95%,然后是5分钟的潜在时期,导致50 PFU/细胞爆发的大小。VB_SALP_792噬菌体基因组的DSDNA长度为37,281 bp,GC含量为51%。有42个编码序列(CD),有24个具有推定功能,没有抗性或毒力相关的基因。VB_SALP_792噬菌体显着降低了已建立的生物膜和蛋清中的细菌载荷。Thus, vB_SalP_792 phage can serve as an effective biocontrol agent for preventing Salmonella infections in food, and its potent lytic activity against the clinical isolates of S. enterica , sets out vB_SalP_792 phage as a successful candidate for future in vivo studies and therapeutical application against drug- resistant Salmonella infections.