• 混合粘合尺寸:~13 x 29 毫米(0.45x 掩模版) • 顶部的逻辑芯片可改善散热效果 • N5 XCD/CCD 堆叠在 N6 基片(IOD)上 • 垂直带宽高达 17TB/s
NIR/VIS 单频激光器的封装挑战 Björn Globisch,TOPTICA EAGLEYARD,Rudower Chaussee 29,12489 Berlin EPIC 技术会议@柏林 Fraunhofer IZM,2024 年 6 月 4/5 日
摘要:封装已经用于食品,药物,化妆品和农业化学行业,是一种用于保护活性成分免受外部降解因子并控制其释放动力学的策略。已经研究了各种封装技术,既可以优化侵略者的性质的保护水平,又有利于活性化合物扩散和屏障材料降解之间的释放机制。生物聚合物由于其生物相容性,生物降解性和无毒性而特别引起了壁材料的关注。通过在药物周围形成稳定的水凝胶,它们提供了一种“智能”屏障,其行为可以根据环境条件而改变。在对封装的概念和用于实现封装的主要技术(包括微凝胶)的概念进行了全面描述之后,提出了活跃化合物的受控释放的机制。随后出现了天然聚合物的全景,突出了与每种聚合物相关的主要结果,并试图根据包裹的药物识别最具成本效益和最合适的方法。
分别为5.9±0.9 µ f或83±13 µ f/cm 2; n = 3),尽管阳离子的尺寸非常不同
摘要:电子封装产品在使用过程中,焊点在温度循环作用下发生热疲劳,对电子产品的性能和焊点的可靠性有显著的影响。本文对微电子封装焊点热疲劳失效机理、热疲劳过程的组织变化、对焊点疲劳寿命的影响因素以及热疲劳寿命的仿真分析与预测进行了综述。研究表明,在交变温度循环的高温阶段,焊点发生不均匀粗化,导致疲劳裂纹的产生。但焊料厚度和高温阶段的保持时间对热疲劳影响不显著。随着循环次数的增加,粗化区和IMC层不断增厚,裂纹沿金属间化合物(IMC)层与粗化区界面萌生并扩展,最终导致焊点失效。对于含铅和无铅焊料,含铅焊料表现出更快的疲劳裂纹扩展速率,并以穿晶方式扩展。温度和频率对焊点热疲劳寿命的影响程度不同,焊点的疲劳寿命可以通过多种方法和模拟裂纹轨迹进行预测,也可以通过使用统一的本构模型和有限元分析进行预测。
四个综合项目:1.开展先进半导体技术的研究和原型设计 2.加强半导体先进封装、组装和测试 3.推动测量科学、标准、材料特性、仪器、测试和制造方面的进步
随着半导体的物理尺寸达到极限,以生成性人工智能为代表的对大规模计算能力的需求正在推动芯片上晶体管元件密度的持续增加。 FinFET结构可提高元件密度,同时抑制传统平面场效应晶体管(FET)小型化所导致的漏电流,目前该结构已开始量产,未来将向GAA(Gate-All-Around)纳米片结构迈进,该结构可将电流通道的控制面从FinFET的三面增加到四面。因此,晶体管的结构变得更加复杂,导致量产时产品良率下降、成本增加。另一方面,人们担心所需计算能力的扩大将超过半导体元件密度的扩大,导致电路规模超过曝光的光罩极限。在此背景下,为了缓解成本上升的问题,一种根据架构将半导体芯片物理地划分为芯片小体(chiplet)的方法已经投入量产。此外,未来还将考虑采用安装技术对适合光罩极限的芯片进行封装和扩大的方法。此外,Chiplet超越了单片芯片的简单划分,可以把不同代半导体芯片或已有芯片组合起来,有望缩短开发周期,改变供应链,有望成为未来半导体产业的一大趋势。
摘要 — 玻璃通孔 (TGV) 是一种新兴技术,它使电子中介层比有机基板更具优势。这些优势包括出色的尺寸稳定性、与硅片更接近的热膨胀系数 (CTE)、高热稳定性和高电气隔离。这些都有利于现代系统所需的更高数据速率。此外,TGV 还有利于支持更高数据速率和更高密度的光收发器封装设计。我们描述了 TGV 技术在光学引擎设计中的优势,该引擎能够以业界领先的密度支持 112 Gbps 通道。
上午 10:20 – 11:30 小组讨论:支持初创企业主持人:Daniel Armbrust,Silicon Catalyst
