该法案引入了一个流程,生产转基因动物的人必须表明他们不希望动物健康或福利受到不利影响,并且他们已经评估了风险,并解释他们是如何做到这一点的(第 11(3) 条)。福利咨询机构将评估每一份申请,判断是否已采取合理措施识别风险并考虑这些风险。但如果国务大臣持负面看法,则有权推翻该机构的决定,并允许授权生产转基因动物(第 11-13 条)。食品安全局 (FSA) 将有权授权销售任何转基因食品或产品,而不必考虑委员会的任何负面意见(第 26(6) 条)。政府同意 FSA 流程将采取“轻触式”方法。3
系统性硬化症 (SSc) 是一种罕见且异质性疾病,没有相关的环境诱因或显著的致病基因。一直以来,很难找到足够多的患者来进行经典的基于人群的流行病学暴露/非暴露研究,并有足够的能力确定这些疾病的环境和遗传风险因素,而且这种情况将继续存在。发病机制的复杂性和异质性可能需要针对 SSc 的个性化/精准医疗。由于目前有几种潜在药物可用于特定患者(如果不是整个 SSc),因此 SSc 的分类似乎为更好的治疗策略奠定了基础。迄今为止,SSc 的分类基于受影响区域的范围/严重程度以及一些疾病标志物,包括自身抗体谱。然而,这种分析也应该有助于改进适当分层的临床试验的设计,以确定靶向治疗的效果和预测。基于临床前药物反应的方法,使用患者自身的成纤维细胞体外进行,可以为临床实践提供精确的疾病标记/治疗选择。因为硬皮病真皮成纤维细胞具有持续的高产表型,不仅在人体中发生,而且在细胞培养条件下也发生。因此,基于疾病标记的累积方法可确保 SSc 发病后病情进展和降级,从而通过个性化优化的药物环境重新建立更好的生活。
● 需要在必须保护的生态环境中优化可可种植。据(Bessombes 2015)称,秘鲁是世界第二大可可出口国。
精准农业对于实现可持续粮食生产以满足日益增长的粮食需求至关重要。近几十年来,人工智能 (AI) 和物联网 (IoT) 的技术进步有助于解决各种农业领域问题,优化资源利用率(例如水、农药、肥料、种子、能源),改善生产管理和生产力,并减少对劳动力的依赖。人工智能和物联网应用越来越多地用于精准农业应用,例如作物生长监测、除草控制、病虫害检测、种植、作物产量估算、定向喷洒和授粉、智能灌溉和养分管理、田间分析和植物表型分析。例如,使用机器学习和深度学习模型的基于物联网的应用被广泛用于识别水果、蔬菜、杂草、害虫和疾病,并测量土壤质量和养分。这些信息有助于提供更好的作物管理实践。尽管人工智能和物联网技术在精准农业中取得了进展,但以 AIoT 形式结合使用这些技术仍处于早期阶段,在数据采集和连接以及基于边缘计算处理能力的人工智能算法优化等方面仍存在许多挑战需要解决。本研究课题重点关注人工智能和物联网应用领域在大田作物和特种作物精准农业技术方面的最新进展。本研究课题吸引了 9 篇研究文章和 3 篇评论文章。这些文章揭示了应用机器学习和深度学习技术在各种精准农业应用方面的研究进展和趋势。机器人采摘在解决手工劳动密集型和时间敏感的采摘作业的劳动力短缺问题方面发挥着重要作用。例如,Sun 等人提出使用 YOLO-P 来检测自然果园环境中的梨以供机器人采摘。他们提出将混洗块与卷积块注意模块 (CBAM) 集成作为 YOLOv5 网络的主干。总共使用 5,257 张包含各种背景和照明条件的图像来训练和测试所提出的方法。进行了不同的消融实验来检查稳健性和
作者:Oscar G. Wilkins 1,2 *、Max ZYJ Chien 1,2 †、Josette J. Wlaschin 3,4 †、Simone Barattucci 1 、Peter Harley 1 、2
重症肌无力 (MG) 是一种由神经肌肉接头 (NMJ) 自身抗体引起的慢性致残性自身免疫性疾病,临床特征为眼肌、骨骼肌和延髓肌波动性虚弱和早期疲劳。尽管 MG 通常被认为是一种原型自身免疫性疾病,但它是一种复杂且异质性的疾病,表现出不同的临床表型,这可能是由于与不同的免疫反应性、症状分布、疾病严重程度、发病年龄、胸腺组织病理学和对治疗的反应相关的不同病理生理环境所致。目前基于国际共识指南的 MG 治疗可以有效控制症状,但大多数患者无法达到完全稳定的缓解,需要终生免疫抑制 (IS) 治疗。此外,其中一部分患者对传统 IS 治疗有抵抗力,这凸显了对更具体和量身定制的策略的需求。精准医疗是医学领域的一个新领域,有望大大提高多种疾病(包括自身免疫性疾病)的治疗成功率。在 MG 中,B 细胞活化、抗体再循环和补体系统对 NMJ 的损伤是关键机制,创新生物药物针对这些机制的靶向性已在临床试验中被证明是有效和安全的。从传统 IS 转向基于这些药物的新型精准医疗方法可以前瞻性地显著改善 MG 护理。在本综述中,我们概述了 MG 背后的关键免疫致病过程,并讨论了针对这些过程的新兴生物药物。我们还讨论了未来的研究方向,以满足根据遗传和分子生物标志物对患者进行内型分层的需求,以便在精准医疗工作流程中成功做出临床决策。
由于来自遗传或基因组评估的信息是复杂的,并且随着时间的流逝而变化,因此经常在接受测试之前和之后咨询临床遗传学家。遗传咨询将帮助患有遗传疾病的患者或家庭了解测试的需求,局限性和收益,以及家庭内发生的疾病,风险和频率的性质,模式和性质,以及在家庭计划中做出明智决定的预防手段。心脏病专家可以进行其他检查以评估病情,安排检查以确认诊断以制定最佳治疗计划。
本次会前会议的计划由美国国家老龄化研究所和阿尔茨海默病协会联合制定。本次会前会议的注册由阿尔茨海默病协会独自管理和协调,注册费用不会与美国国家老龄化研究所共享。如果您对注册有任何疑问,请联系阿尔茨海默病协会。
越来越明显的是,与人类神经系统进行有针对性的互动可以改善人类多种疾病状态和认知领域的状况。深部脑刺激 (DBS) 就是一个存在的证据,它已经获得美国食品和药物管理局的批准,用于治疗帕金森病和特发性震颤 [3] 等运动障碍,以及癫痫 [4] 等神经系统疾病。新兴研究表明,DBS 可以有效治疗比以前预想的更广泛的疾病,包括难治性抑郁症 [5] 、情绪障碍和焦虑症 [6] 、创伤后应激障碍 [7] 、物质成瘾 [8] ,甚至可能是阿尔茨海默病 [9] ,这表明广大民众都可能从神经技术中受益。
考虑到发达国家老龄人口比例的增加(又称银色海啸),基于现代医疗保健进步以及创新方法和技术的长寿和精准医疗概念变得比以往任何时候都更加重要。其最终目标是减缓衰老过程,延长人类活跃而健康的寿命。在方法论和概念上相似,长寿和精准医疗是抗衰老医学不可或缺的一部分。抗衰老医学是医学科学的一个不断发展的分支,它治疗衰老的根本原因并旨在缓解与年龄相关的疾病。其最终目标是延长人类的健康寿命。在瑞士,如果诊所拥有相关产品和服务,例如通过排毒恢复活力、使用生物同质激素恢复激素水平、测量生物标志物等,我们就会将其视为专注于长寿和精准医疗的诊所。预期寿命指数是瑞士长寿和精准医疗表现优异的明显指标之一。 2020年,瑞士的预期寿命在欧洲排名第一(超过83.8岁)。抗衰老医学对人类来说既有风险也有机遇,因此有必要对其进行规范并谨慎地融入临床和社会。