精准农业对于实现可持续粮食生产以满足日益增长的粮食需求至关重要。近几十年来,人工智能 (AI) 和物联网 (IoT) 的技术进步有助于解决各种农业领域问题,优化资源利用率(例如水、农药、肥料、种子、能源),改善生产管理和生产力,并减少对劳动力的依赖。人工智能和物联网应用越来越多地用于精准农业应用,例如作物生长监测、除草控制、病虫害检测、种植、作物产量估算、定向喷洒和授粉、智能灌溉和养分管理、田间分析和植物表型分析。例如,使用机器学习和深度学习模型的基于物联网的应用被广泛用于识别水果、蔬菜、杂草、害虫和疾病,并测量土壤质量和养分。这些信息有助于提供更好的作物管理实践。尽管人工智能和物联网技术在精准农业中取得了进展,但以 AIoT 形式结合使用这些技术仍处于早期阶段,在数据采集和连接以及基于边缘计算处理能力的人工智能算法优化等方面仍存在许多挑战需要解决。本研究课题重点关注人工智能和物联网应用领域在大田作物和特种作物精准农业技术方面的最新进展。本研究课题吸引了 9 篇研究文章和 3 篇评论文章。这些文章揭示了应用机器学习和深度学习技术在各种精准农业应用方面的研究进展和趋势。机器人采摘在解决手工劳动密集型和时间敏感的采摘作业的劳动力短缺问题方面发挥着重要作用。例如,Sun 等人提出使用 YOLO-P 来检测自然果园环境中的梨以供机器人采摘。他们提出将混洗块与卷积块注意模块 (CBAM) 集成作为 YOLOv5 网络的主干。总共使用 5,257 张包含各种背景和照明条件的图像来训练和测试所提出的方法。进行了不同的消融实验来检查稳健性和
主要关键词