创伤性脑损伤(TBI)是成人残疾的主要原因,是由于身体侮辱会损害大脑的原因。基于生长因子的疗法有可能通过提供针对谷氨酸兴奋性,氧化性损伤,缺氧和缺血的神经保护作用,并促进神经突生长和新血管的形成,从而减少继发性损伤的影响并改善结果。尽管在临床前研究中有很有希望的证据,但在TBI的临床试验中,很少有人测试过神经营养因素。翻译到诊所并不小,受到蛋白质的体内半衰期短,无法越过血液 - 脑屏障和人类输送系统的限制。合成肽模拟物具有代替重组生长因子的潜力,激活了相同的下游信号通路,并且大小降低和更有利的药代动力学特性。在这篇综述中,我们将讨论生长因子,其潜力可能调节因脑损伤而在包括脊髓损伤,中风和神经退行性疾病在内的其他适应症中试验的造成的损害。神经生长因子(NGF),肝细胞生长因子(HGF),神经胶质细胞系生长因子(GDNF),脑源性神经营养因子(BDNF),血小板生长因子(PDGF)和纤维细胞生长因子(FGF)的 tbi。
通过胚胎活检对非整倍性(PGT-A)的植入前基因检测有助于通过评估胚胎倍性来进行胚胎选择。然而,临床实践需要考虑胚胎活检,潜在的镶嵌和不准确的整个胚胎的侵入性。这产生了对不损害胚胎或提高治疗成本的改进诊断实践的重要临床需求。因此,越来越重视开发非侵入性技术以增强胚胎的选择。这些创新包括非侵入性PGT-A,人工智能(AI)算法和非侵入性代谢成像。后者通过代谢辅助因子的自动荧光来测量细胞代谢。值得注意的是,高光谱显微镜和荧光寿命成像显微镜(FLIM)揭示了非整倍性胚胎和人类纤维细胞中独特的代谢活性特征。这些方法表明在区分多倍体和非整倍体胚胎方面已经表现出很高的精度。因此,本综述讨论了与PGT-A相关的临床挑战,并强调了对新颖溶液(例如代谢成像)的需求。此外,它探讨了针对细胞行为和新陈代谢的影响,在这项研究领域中为未来的研究方向提供了观点。
目标。异常NLRP3炎症症状激活,这可能有助于使炎症和骨骼破坏衰弱。在这里,我们探讨了有效的TGF-B激活激活的激活激酶-1(TAK1)抑制剂LL-Z1640-2(LLZ)对胶原蛋白诱导的关节炎(CIA)的关节膨胀和骨破坏的效率。方法。ll-Z1640-2每隔一天在中央情报局小鼠中一次施用。进行了临床和组织学评估。启动和激活NLRP3炎症和骨质质构成活性。结果。nlrp3炎症形成。TACE和RANKL在CIA关节中分别在滑膜巨噬细胞和纤维细胞中过表达。使用LLZ治疗可缓解上述所有变化。结果,LLZ明显抑制了滑膜肥大和pannus形成,以减轻CIA小鼠的疼痛和炎症。llz可以阻止RAW264.7巨噬细胞系,原代骨髓巨噬细胞和LPS治疗后的NLRP3炎症的启动和激活,从而抑制其IL-1 B产生。llz还抑制了LPS诱导的骨髓巨噬细胞中TACE和TNF-a的产生,并废除了IL-1 B-诱导的MMP-3,IL-6和RANKL的产生。此外,LLZ直接抑制RANKL介导的OC形成和激活。结论。tak1抑制LLZtak1抑制LLZ
在生理相关的水凝胶中的工程脉管网络是由于细胞– Bioink相互作用以及随后的水凝胶设备接口而成的。在这里,提出了一种新的细胞友好制造策略,以实现支持集成在微流体芯片中的共培养的灌注多凝胶脉管模型。该系统包含两个不同的水凝胶,以特定支持为血管模型选择的两种不同细胞类型的生长和增殖。首先,通过微流体设备内的两光聚合聚合(2pp),通道以明胶的墨水印刷。然后,注入人类肺纤维细胞纤维纤维水凝胶以包围印刷网络。最后,人体内皮细胞被播种在印刷通道内。打印参数和纤维纤维组合物进行了优化,以减少水凝胶肿胀,并确保可以用细胞介质灌注的稳定模型。以两个步骤制造水凝胶结构可确保没有细胞暴露于细胞毒性制造过程,同时仍获得高纤维打印。在这项工作中,在定制制造的灌注系统上成功证明了通过3D印刷的SCA旧和共培养模型的灌注来指导内皮细胞入侵的可能性。
在诸如生物医学和人机互动之类的有吸引力平台的快速发展已经对具有高强度,灵活性和自我修复功能的智能材料产生了紧迫的需求。然而,由于非共价键合固有的低强度,高强度,低弹性模量和治愈能力之间的交易挑战了现有的自我修复能力材料。在这里,从人类纤维细胞中汲取灵感,基于两亲离子限制器(7000倍的体积单体捕获)中的分离和重新构造,提出了一种单体捕获合成策略,以开发出Eutectogel。从纳米配置和动态界面相互作用中获得的好处,形成的配置结构域的分子链主链机械地加强了软运动能力。所产生的共凝剂表现出优异的机械性能(比纯聚合的深层共晶溶剂比抗拉伸强度和韧性高1799%和2753%),出色的自我修复效率(> 90%),低切向切向模量(在工作阶段的0.367 MPA)以及启发人类的人类活动。该策略有望为开发高强度,低模量和自我修复的可穿戴电子设备提供新的视角,适合人体运动。
糖尿病和动脉粥样硬化(AS)是两个密切相关的疾病,显着影响全球健康(1)。为特征是动脉壁中炎性细胞,脂质和纤维元素的进行性积累,是心血管疾病(CVD)的主要原因(2)。CVD仍然是糖尿病患者发病率和死亡率的主要原因(3)。载脂蛋白E(APOE)是AS的有效抑制剂。apoE-敲除(APOE-KO)小鼠通常在AS研究中使用,因为它们的AS的发展(例如高脂饮食(HFD))(HFD)(4)。最近的研究强调了糖尿病是动脉粥样硬化病变发展和进展的重要危险因素(5)。已知泡沫巨噬细胞和内皮细胞之间的复杂串扰在斑块形成中起着至关重要的作用,斑块形成是AS的标志(6-8)。糖尿病对主要源于慢性高血糖的影响,这会产生一种持续的炎症微环境,从而促进了作为发育的促进(9)。在这种微环境中,巨噬细胞起着至关重要的作用,因为它们不仅有助于斑块形成泡沫细胞,而且还与其他细胞(例如内皮细胞,间质细胞,纤维细胞,纤维细胞和其他免疫细胞)积极相互作用(10)。在这些相互作用期间,巨噬细胞可以响应高血糖症来改变其表型或极化(11)。表观遗传变化发生在巨噬细胞和糖尿病的其他细胞类型中(12)。这些变化是指基因表达中的修改,而不会改变潜在的DNA序列(12),例如组蛋白甲基转移酶(HMTS),组蛋白脱乙酰基酶(HDACS)和DNA甲基转移酶(DNMTS)(DNMTS)(13)。这些酶调节促炎基因,脂质代谢基因和细胞粘附分子的表达,有助于动脉粥样硬化病变的发展和进展(13)。了解这些表观遗传调节剂在与糖尿病相关的动脉粥样硬化中的特定作用可以帮助确定用于预防和治疗的新型治疗靶标。此外,已经研究了在糖尿病与动脉粥样硬化的背景下,不同表观遗传调节剂与其他因素(例如氧化应激和晚期糖基化终产物(年龄))之间的相互作用(14)。在糖尿病中的发展过程中,巨噬细胞经历表观遗传学改变,例如DNA甲基化和组蛋白修饰,这些改变会影响其激活,极化和功能(12)。例如,特定促弹性基因的启动子区域可能表现出降低的DNA甲基化,从而导致表达增强并促进亲动氏源性环境(12)。此外,可能会发生不同的翻译后修饰,以改变染色质结构和可访问性以影响基因表达(12)。在与糖尿病相关的AS的背景下,巨噬细胞可能会在涉及炎症,脂质代谢和细胞粘附的基因上表现出改变的组蛋白修饰模式(15)。在促炎基因上增加的组蛋白乙酰化或甲基化可能会促进这些基因的表达,从而进一步加剧AS(16)。
背景:慢性细菌的慢性伤口表现出越来越多的全球健康问题。这些伤口很难治愈,表现出长时间的炎症和反复出现的微生物感染。copaiba油脂(Copaifera Multijuga Hayne)是一种富含倍半萜和二萜的物质,可促进塞卡抗化(纤维细胞形成的纤维组织的收缩,由成纤维细胞的伤口部位形成,可减少伤口尺寸,同时扭曲伤口组织。目的:分析来自多叶梭菌油脂蛋白的抗菌活性(体外),以针对慢性伤口感染中普遍的微生物。方法:通过气相色谱法对油的表征以及质谱和抗菌敏感性测试通过琼脂和汤稀释的磁盘扩散。结果:鉴定为主要化合物的色谱分析:牛角素(60.89%),胚芽D(19.40%)和humulene(7.12%)。纯铜提取物表现出对病原体金黄色葡萄球菌,铜绿假单胞菌和粪肠球菌的活性。Copaiba油脂,葵花籽油和混合物的浓度为7%,10%和12%,通过汤稀释和琼脂扩散的少量活性来表现出对大肠杆菌的活性。结论:用于治疗皮肤伤口的浓度中的铜油蛋白没有对伤口感染中普遍的微生物的杀菌作用。
心肌和心律不齐的纤维化变化代表系统性硬化症(SSC)的致命并发症,但是基本机制仍然难以捉摸。小鼠过度表达转录因子FOSL-2(FOSL-2 TG)代表SSC的动物模型。Fosl-2 tg mice showed interstitial cardiac fi brosis, disorganized connexin-43/40 in intercalated discs and deregulated expression of genes controlling conduction system, and developed higher heart rate (HR), prolonged QT intervals, arrhythmias with prevalence of premature ventricular contractions, ventricular tachycardias, II-degree atrio-ventricular blocks并降低了人力资源变异性。用异丙肾上腺素FOSL-2 TG小鼠刺激后,HR反应受损。与FOSL-2 TG相比,免疫dim dim rag2 - / - fosl-2 tg小鼠受到增强的心肌纤维化和ECG异常的保护。转录组学分析表明,FOSL-2-ERVERSESS是造成心脏纤维细胞的纤维性特征的原因,而FOSL-2 TG小鼠中的炎症成分激活了它们的纤维性和心律失常的作用表型。在人类心脏纤维细胞中,FOSL-2超过表达增强了肌纤维细胞的签名,在proinmotal或pro粘连刺激下。这些结果表明,在免疫性条件下,转录因子FOSL-2夸大了肌纤维纤维肌,心律不齐和对压力的异常反应。
摘要:基于纳米载体的药物输送系统的开发是药理学,有希望的靶向递送和药物毒性降低的主要突破。在细胞水平上,药物的封装显着影响纳米载体 - 膜相互作用引起的内吞过程。在这项研究中,我们合成并表征了由N-乙烯基-2-吡咯酮的两亲寡聚组组装的纳米载体,并与末端硫代二烷基(PVP-OD)组成。发现PVP-OD的溶解自由能线性地取决于其亲水性部分的分子质量至M n = 2×10 4,从而导致临界聚集浓度(CAC)对摩尔质量的指数依赖性。将一种模型疏水化合物(DII染料)加载到纳米载体中,并以18小时的比例表现出缓慢的释放到水相中。使用胶质母细胞瘤(U87)和纤维细胞(CRL2429)细胞比较了负载的纳米载体和游离DII的细胞摄取。尽管DIV> DII/PVP-OD纳米载体和自由DII均被Dynasore抑制,这表明在存在Wertmannin的情况下观察到了自由DII的摄取率的降低。这表明,虽然巨细胞增多症在摄取低分子成分中起作用,但通过将DII掺入纳米载体中可以避免这种途径。
了解软细胞发育的机制及其在35植入中的作用对于改善农场动物繁殖至关重要,但由于缺乏36个研究模型而受到阻碍。在这里我们报告说,化学鸡尾酒(FGF4,BMP4,IL-6,XAV939和37 A83-01)可实现从头推导和牛的长期培养,并具有长期的牛外胚膜内胚层38细胞(BXENS)。转录组和表观基因组分析证实了BXENS的身份,39表明它们是早期牛植入植入术胚胎的低成质细胞谱系。40我们表明,Bxens有助于维持牛ESC的干性,并防止它们从41个分化中。在存在信号鸡尾酒的存在下,在发育中的植入前胚胎中也促进了培养细胞的生长和42个e培培养。43此外,通过牛Esc和TSC的Bxens的3D组装,我们开发了一个44个改进的牛胚泡结构(牛胚泡),类似于胚泡。这项研究中建立的45个牛Xens和类囊体代表了可访问的体外模型,可用于46了解牲畜物种中的低纤维细胞发育并提高生殖效率。47