人工智能 (AI) 和机器学习的最新进展为肌肉骨骼放射学提供了大量机会,有可能提高诊断准确性、工作流程效率和预测模型。AI 工具能够协助放射科医生完成图像分割、病变检测等多项任务。在骨和软组织肿瘤成像方面,放射组学和深度学习有望实现恶性肿瘤分层、分级、预后和治疗计划。然而,在临床转化之前,需要解决标准化、数据集成和患者数据的伦理问题等挑战。在肌肉骨骼肿瘤学领域,由于发病率有限,AI 在稳健算法开发方面也面临着障碍。虽然许多计划旨在开发多任务 AI 系统,但多学科合作对于将 AI 成功融入临床实践至关重要。需要采取稳健的方法来应对挑战并体现道德实践,以充分发挥 AI 在提高诊断准确性和推进患者护理方面的潜力。
与生物材料应用相关的研究涵盖了组织工程和再生医学 (TERM) 领域的很大一部分,本研究课题致力于生物材料用途的多种可能性。本研究课题共收到 10 篇手稿,35 位作者参与其中,最终选出 6 篇。其中 4 篇为原创研究文章,2 篇为评论文章。生物材料最有趣的方面之一是我们能够研究所选材料的整个生命周期,可能的第一步是建模和材料科学。通常,当我们尝试开发一种新材料时,可以使用各种光谱方法(例如傅里叶变换红外光谱 (FTIR)、X 射线光电子能谱 (XPS))和显微镜方法(例如数字显微镜、扫描电子显微镜 (SEM) 或荧光显微镜)来评估表面和成分。这些方法需要根据起始材料和制造类型进行选择,这也是将生物材料划分为适当类别的另一个方面,因为金属基材料通常不适合 FTIR、荧光显微镜或通常不适合肿胀或酶分解相关的表征,但它们的途径或消除可以在生物系统中跟踪,例如,使用磁共振成像(MRI)、正电子发射断层扫描(PET)、计算机断层扫描(CT)。制造方法主要可分为以下几种:相分离(沉淀)、快速成型、超临界流体技术、致孔剂浸出、静电纺丝、3D 打印、冷冻干燥、离心铸造、模板和微图案化( Collins and Birkinshaw,2013;Tóth 等,2023)。然而,一般来说,对生物材料的主要要求是改善组织再生,并能够创造一个支持细胞附着、增殖、迁移和分化的环境(Juriga 等人,2022 年;Zhang 等人)。使用时间最长的生物材料之一是金属,因此可以肯定地说,这种材料经受住了时间的考验,然而,我们仍然可以看到金属生物材料的制造和处理方面的发展方向。在制造方面,传统方法是铸造金属,但金属的 3D 打印正在迅速引起人们的兴趣,然而,由于 3D 打印医疗器械的监管尚不明确,因此医疗器械中仍然应用铸造材料(Burnard
癌症患者接受诊断和治疗的过程十分复杂,相关人员对此了解甚少。这个过程通常涉及多家医疗机构,涉及一系列公立和私立机构。最佳癌症护理过程为特定类型的肿瘤绘制了这一过程,旨在促进对整个过程及其不同组成部分的理解,以促进优质的癌症护理和患者体验。这些过程提醒人们,患者是这一过程中的常客,医疗系统有责任以适当和协调的方式提供护理体验。
摘要。被称为软组织肉瘤(STS)的独特和多样性肿瘤的收集受到许多因素的阻碍,例如延迟或不准确的诊断,缺乏临床知识,以及限制性治疗方法。周围,连接和支持其他体器官和结构的组织是一种罕见类型的癌症,称为软组织肉瘤。肌肉,脂肪,血管,深层皮肤组织,肌腱和韧带可能受到软组织肉瘤的影响。软组织肉瘤几乎可以在每个身体成分(包括手臂,腿部和腹部)中出现。这些诊断错误严重损害了患者的治疗方式。研究人员已经提出了许多机器学习模型,以对癌症进行分类,但是它们都没有充分解决误诊问题。此外,大多数可比较的研究都提出了评估这些恶性肿瘤的模型,并未考虑到数据的异质性和数量。这项研究介绍了机器和深度学习方法之间的比较,以改善软组织肉瘤的分类。这项研究进一步提出了STS的早期检测。在下一阶段分类中,采用了最佳卷积神经网络(CNN)。
骨和软组织肉瘤约占儿童实体恶性肿瘤的15%,成人实体恶性肿瘤的1%。肉瘤有50多种亚型,每种亚型都具有明显的异质性,并表现出显著的表型和形态变异性。安罗替尼是一种新型口服酪氨酸激酶抑制剂 (TKI),靶向c-kit、血小板衍生的生长因子受体、成纤维细胞生长因子受体和血管内皮生长因子受体。与安慰剂相比,安罗替尼在晚期非小细胞肺癌 (NSCLC) 患者的 III 期临床试验中具有更好的总生存期和无进展生存期 (PFS),尽管患者在接受两线治疗后癌症出现进展。最近,国家药品监督管理局批准安罗替尼单药治疗作为晚期 NSCLC 患者的三线治疗。此外,一项 IIB 期随机试验证实,安罗替尼与晚期软组织肉瘤患者的中位 PFS 显著延长相关。此外,安罗替尼对晚期髓样甲状腺癌和转移性肾细胞癌患者也有效。安罗替尼的耐受性与针对血管内皮生长因子受体和其他酪氨酸激酶介导途径的其他 TKI 相似。然而,与舒尼替尼相比,安罗替尼的 ≥ 3 级副作用发生率明显较低。本综述讨论了安罗替尼作为肉瘤靶向治疗的显著特点和主要难题。
值是中值(Q1-Q3)或N(%)。8个多形性心脏肉瘤,4个纺锤体细胞肉瘤,1个脂肪肉瘤,1个软骨细胞骨肉瘤,2个内膜肉瘤。b二尖瓣阻塞和上腔静脉综合征。c 1每个患者:pembrolizumab加紫杉醇,pembrolizumab加上pazopanib,pembrolizumabÞRibociclib和pembrolizumab floce therapy 2疗法。
历史上,骨和软组织肉瘤的治疗是采用手术、化疗和放疗相结合的方法。尽管局部治疗效果最佳,但 40% 的软组织肉瘤患者会出现转移,转移性疾病患者的预后仍然不佳 [1, 2]。因此,这类患者显然需要新的治疗策略。多项临床前数据表明,包括 DNA 甲基化和组蛋白乙酰化在内的表观遗传变化通过修饰基因转录促成发病机制 [3]。事实上,染色质结构改变和相关的表观遗传修饰因子与骨和软组织肉瘤的肿瘤发生有关,这些结果为针对这类患者群体的表观遗传修饰的新药研发提供了可能性 [4–8]。本综述旨在概述表观遗传相关靶向药物的临床前开发及其在骨和软组织肉瘤中的临床应用。我们分析了涉及表观遗传控制各层的治疗靶点,包括
“我们正在申请专利的支架使用起来非常简单;它可以像乐高积木一样堆叠在一起,并以数千种不同的配置放置,以适应几乎任何情况的复杂性和规模,”领导该技术开发、俄勒冈健康与科学大学牙科学院副教授和俄勒冈健康与科学大学医学院生物医学工程副教授 Luiz Bertassoni 博士说道。
背景:软组织肉瘤 (STS) 是罕见的异质性肿瘤,需要生物标志物来指导治疗。我们之前得出了一个预后肿瘤微环境分类器(24 基因缺氧特征)。在这里,我们开发/验证了一种用于临床应用的检测方法。方法:在 28 份前瞻性收集的福尔马林固定石蜡包埋 (FFPE) 活检样本中比较了靶向检测 (Taqman 低密度阵列、nanoString) 的技术性能。通过与临床样本中的 HIF- 1 α /CAIX 免疫组织化学 (IHC) 进行比较,对 nanoString 检测进行了生物学验证。曼彻斯特 (n = 165) 和 VORTEX III 期试验 (n = 203) 队列用于临床验证。主要结果是总生存期 (OS)。结果:两种检测均表现出极好的可重复性。 nanoString 检测在体外缺氧条件下检测到 24 个基因特征的上调,而在体内 CAIX 表达高的肿瘤中,16/24 个缺氧基因上调。在曼彻斯特队列(HR 3.05,95% CI 1.54 – 5.19,P = 0.0005)和 VORTEX 队列(HR 2.13,95% CI 1.19 – 3.77,P = 0.009)中,缺氧高肿瘤患者的 OS 较差。在合并队列中,缺氧高肿瘤患者的 OS 独立预后(HR 2.24,95% CI 1.42 – 3.53,P = 0.00096)并与较差的局部无复发生存期相关(HR 2.17,95% CI 1.01 – 4.68,P = 0.04)。结论:本研究全面验证了更适合 FFPE STS 活检的微环境分类。未来用途包括:(1) 选择高风险患者进行围手术期化疗;(2) 生物标志物驱动的缺氧靶向治疗试验。
肉瘤是一类异质性罕见癌症,具有共同的间叶来源。然而,特定亚型的肉瘤具有不同的临床、病理和分子特征,导致对目前批准的标准治疗方法的反应不同,总体预后也各异 ( 1 )。尽管肉瘤种类繁多(目前世界卫生组织 (WHO) 的分类将肉瘤分为约 100 种组织学亚型),但在过去 40 年中,一刀切的治疗方法一直主导着晚期软组织肉瘤 (STS) 的治疗。骨肉瘤的治疗方法类似。尽管化疗最初在总体生存率方面取得了显著进展,但目前仅有传闻中的靶向疗法或免疫疗法被批准用于治疗肉瘤。因此,临床上迫切需要从分子水平上了解这些肿瘤,以“打破天花板”并显著影响这些患者的预后(2、3)。在多样化和罕见的肉瘤群体中,开发个性化、分子信息疗法具有挑战性。因此,目前只有一小部分软组织或骨肉瘤患者能从基因组靶向治疗中受益(4-7)。目前,美国食品药品管理局 (FDA) 批准用于治疗肉瘤的生物标志物靶向疗法很少,包括针对胃肠道间质瘤 (GIST) 的 KIT 和 PDGFRA、腱鞘巨细胞瘤的 CSF1R、上皮样肉瘤的 EZH2、血管周上皮样细胞分化瘤 (PEComa) 的 mTOR 和炎性肌成纤维细胞瘤的 ALK( 4 , 7 – 10 )。在过去十年中,随着对多种肿瘤类型致癌分子改变的了解不断加深,以及高效靶向疗法的出现,开启了药物开发的新时代,其特点是与组织学无关、生物标志物驱动的疗法( 11 )。在这个新时代,正在开发用于治疗特定分子改变的疗法,无论肿瘤组织来源如何。迄今为止,FDA 已批准六种药物作为组织学不可知论疗法,针对四种不同的分子生物标志物(12-16)。组织学不可知论开发首次被认可为一种新的药物审批监管途径,是因为微卫星不稳定性高 (MSI-H) 表型被认定为抗 PD-1 免疫检查点抑制剂疗效的预测生物标志物。这引发了一系列试验,研究使用 pembrolizumab 治疗来自不同原发来源的 MSI-H 肿瘤患者。初始疗效结果显著;总体缓解率 (ORR) 为 39%,包括具有 15 种不同肿瘤组织学的患者。此外,这种反应的持久性令人印象深刻——78% 的反应在六个月后持续 (17)。这些结果是 FDA 历史上不分组织学批准派姆单抗用于 MSI-H 肿瘤患者的基础。从那时起,派姆单抗的疗效已在更多患者中得到证实。此外,另一种抗 PD-1 药物 dostarlimab-gxly 也已获批用于相同适应症 ( 12 , 14 )。随后,拉罗替尼和恩曲替尼获批用于治疗 NTRK 融合实体瘤,派姆单抗获批用于治疗高肿瘤突变负荷 (TMB-H) 实体瘤,最近,达拉非尼和曲美替尼联合用药获批用于治疗 BRAF V600E 突变实体瘤 ( 13 ,