距离最近的减肥手术 CME 50 英里或以上的旅行费用:往返 CME 的交通费用限制为每人每趟 130 美元(术前访问、初次手术和一次后续访问);会员及其陪同人员的酒店费用限制为一间双人入住的房间,每趟 2 天 100 美元,或根据医疗需要,用于术前和后续访问;会员及其陪同人员的酒店费用限制为一间双人入住的房间,在会员初次手术住院期间(4 天)每天 100 美元;其他合理费用限制为每人每趟 4 天 25 美元。
神经退行性疾病在老龄化的人群中越来越普遍,但目前尚无疾病改良治疗。通过治疗体温过低增加冷冲蛋白RBM 3的表达非常明显。但是,全身冷却构成健康风险,极大地限制了其临床应用。在Normothermia处的RBM 3的选择性上调具有巨大的治疗潜力。在这里,我们确定了RBM 3基因中的毒物外显子,该基因仅因其冷诱导的表达而完全响应。遗传去除或反义寡核苷酸(ASO)介导的该外显子的操纵可产生高RBM 3水平,而与冷却无关。值得注意的是,使用FDA批准的化学,对ASO进行了单一的管理,以排除毒药外显子,从而导致小鼠大脑中的RBM 3表达增加。在prion虫的小鼠中,这种治疗方法导致了明显的神经保护,尽管疾病相关的prion蛋白水平高,但预防神经元丧失和海绵病。我们在小鼠中的有希望的结果支持RBM 3-诱导ASO的可能性也可能在人类中在急性脑损伤到阿尔茨海默氏病等疾病的情况下提供神经保护作用。
在《联合国NCD宣言》中,国家缺乏进步,这表明许多卫生系统并没有跟上NCD负担的上升13。在获得基本的医疗服务,药物,技术以及检测和治疗CVD患者的基本卫生服务,药物,技术和程序方面存在显着差异。这些差异在某种程度上与一个国家的人均医疗保健支出相关。COVID-19大流行通过显着影响CVD患者的护理递送来加剧这一挑战。许多康复的COVID-19患者已开发出新的心血管健康状况14,15。根据《基本权利宪章》第35条
三天线 N-乙酰半乳糖胺 (GalNAc 3 ) 簇已证明受体介导的配体结合反义药物摄取的效用,这些药物靶向肝细胞表达的 RNA。GalNAc 3 结合的 2 ¢ - O - 甲氧乙基 (2 ¢ MOE) 修饰的反义寡核苷酸 (ASO) 已证明比未结合形式具有更高的效力,以支持较低剂量获得相同的药理作用。我们利用 Ionis 集成安全数据库比较了四种 GalNAc 3 结合和四种相同序列未结合的 2 ¢ MOE ASO。该评估评估了来自八项随机安慰剂对照剂量范围 1 期研究的数据,涉及 195 名健康志愿者(79 名 GalNAc 3 ASO,24 名安慰剂;71 名 ASO,21 名安慰剂)。两组 ASO 临床实验室测试中未发现异常阈值发生率的安全性信号。但是,与安慰剂相比,未结合 2 ¢ MOE ASO 组高剂量范围内的平均丙氨酸转氨酶水平显著升高。与未结合 ASO 组相比,GalNAc 3 -结合 ASO 组导致局部皮肤反应的皮下注射平均百分比低 30 倍(0.9% vs. 28.6%),未发生流感样反应(0.0% vs. 0.7%)。未结合 ASO 组中的三名受试者(4.2%)停止服药。在健康志愿者的短期临床数据比较中,GalNAc 3 -结合 2 ¢ MOE ASO 的整体安全性和耐受性特征明显改善。
摘要 背景 尽管免疫检查点抑制剂已成为临床肿瘤学的突破,但这些疗法未能在相当一部分患者中产生持久的反应。这种缺乏长期疗效的原因可能是预先存在的连接先天免疫和适应性免疫的网络较差。在这里,我们提出了一种基于反义寡核苷酸 (ASO) 的策略,该策略双重靶向 Toll 样受体 9 (TLR9) 和程序性细胞死亡配体 1 (PD-L1),旨在克服对抗 PD-L1 单克隆疗法的耐药性。方法 我们设计了一种高亲和力免疫调节 IM-TLR9:PD-L1-ASO 反义寡核苷酸(以下简称 IM-T9P1-ASO),靶向小鼠 PD-L1 信使 RNA 并激活 TLR9。然后,我们进行了体外和体内研究,以验证 IM-T9P1-ASO 在肿瘤和引流淋巴结中的活性、功效和生物学效应。我们还进行了活体成像,以研究 IM-T9P1-ASO 在肿瘤中的药代动力学。结果 IM-T9P1-ASO 疗法与 PD-L1 抗体疗法不同,可在多种小鼠癌症模型中产生持久的抗肿瘤反应。从机制上讲,IM-T9P1-ASO 激活了肿瘤相关树突状细胞 (DC) 的状态,本文称为 DC3,它们具有强大的抗肿瘤潜力但表达 PD-L1 检查点。IM-T9P1-ASO 有两个作用:它通过与 TLR9 结合触发 DC3 的扩增并下调 PD-L1,从而释放 DC3 的抗肿瘤功能。这种双重作用导致 T 细胞排斥肿瘤。 IM-T9P1-ASO 的抗肿瘤功效取决于 DC3 产生的抗肿瘤细胞因子白细胞介素 12 (IL-12) 和 DC 发育所需的转录因子 Batf3。结论通过同时靶向 TLR9 和 PD-L1,IM-T9P1-ASO 通过 DC 激活放大抗肿瘤反应,从而在小鼠中产生持续的治疗效果。通过强调小鼠和人类 DC 之间的差异和相似之处,本研究可用于为癌症患者制定类似的治疗策略。
本指导原则适用于开发个体化试验性反义寡核苷酸 (ASO) 药物产品的申办方-研究者 2(以下简称“申办方”),用于治疗严重致残或危及生命 (SDLT) 的遗传病 3。通常,患有此类疾病的个人没有其他治疗选择,并且他们的疾病会迅速进展,如果不接受治疗,则会在短时间内导致早期死亡和/或出现毁灭性或不可逆转的发病率。在这种情况下,由于 ASO 作用机制的特殊性以及可治疗的患者群体的稀有性,因此预计不会针对大量患有相同疾病的患者进行药物开发。ASO 药物产品所针对的基因变异应该是试验参与者所独有的,并且通常仅在疾病群体中的少数患者(通常为 1 到 2 名)中报告。如果有多名患者可能适合使用 ASO 药品进行针对性治疗,则该 ASO 不再被视为个体化治疗,申办方应与相关审评部门讨论针对更大患者群体的试验性 ASO 药品的药物开发计划。31
摘要 背景 尽管免疫检查点抑制剂已成为临床肿瘤学的突破,但这些疗法未能在相当一部分患者中产生持久的反应。这种缺乏长期疗效的原因可能是预先存在的连接先天免疫和适应性免疫的网络较差。在这里,我们提出了一种基于反义寡核苷酸 (ASO) 的策略,该策略双重靶向 Toll 样受体 9 (TLR9) 和程序性细胞死亡配体 1 (PD-L1),旨在克服对抗 PD-L1 单克隆疗法的耐药性。 方法 我们设计了一种高亲和力免疫调节 IM-TLR9:PD-L1-ASO 反义寡核苷酸(以下简称 IM-T9P1-ASO),靶向小鼠 PD-L1 信使 RNA 并激活 TLR9。然后,我们进行了体外和体内研究,以验证 IM-T9P1-ASO 在肿瘤和引流淋巴结中的活性、功效和生物学效应。我们还进行了活体成像,以研究肿瘤中的 IM-T9P1- ASO 药代动力学。结果 IM-T9P1-ASO 疗法与 PD-L1 抗体疗法不同,可在多种小鼠癌症模型中产生持久的抗肿瘤反应。从机制上讲,IM-T9P1-ASO 激活了肿瘤相关树突状细胞 (DC) 的状态,本文称为 DC3,它们具有强大的抗肿瘤潜力但表达 PD-L1 检查点。IM-T9P1- ASO 有两个作用:它通过与 TLR9 结合触发 DC3 的扩增并下调 PD-L1,从而释放 DC3 的抗肿瘤功能。这种双重作用导致 T 细胞排斥肿瘤。 IM-T9P1-ASO 的抗肿瘤功效取决于 DC3 产生的抗肿瘤细胞因子白细胞介素 12 (IL-12) 和 DC 发育所需的转录因子 Batf3。结论通过同时靶向 TLR9 和 PD-L1,IM-T9P1-ASO 通过 DC 激活放大抗肿瘤反应,从而在小鼠中产生持续的治疗效果。通过强调小鼠和人类 DC 之间的差异和相似之处,本研究可用于为癌症患者制定类似的治疗策略。
抽象背景尽管免疫检查点抑制剂在临床肿瘤学上是一个突破性的,但这些疗法无法在很大一部分患者中产生持久的反应。缺乏长期疗效可能是由于与先天性和适应性免疫联系起来的较差的已有网络。在这里,我们提出了基于反义寡核苷酸(ASO)的策略,该策略靶向类似Toll样受体9(TLR9)和程序性细胞死亡配体1(PD-L1),旨在克服对抗PD-L1单球体疗法的耐药性。方法我们设计了一种高亲和力的IM-TLR9:PD-L1-ASO反义寡核苷酸(以下简称IM-T9P1-ASO),靶向小鼠PD-L1 Messenger RNA和激活TLR9。然后,我们进行了体外和体内研究,以验证IM-T9P1-ASO活性,功效和生物学作用在肿瘤和排水淋巴结中。我们还进行了静脉成像,以研究肿瘤中的IM-T9P1-ASO药代动力学。与PD-L1抗体治疗不同的IM-T9P1-ASO治疗结果导致多种小鼠癌模型的持久抗肿瘤反应。从机械上讲,IM-T9P1-ASO激活了与肿瘤相关的树突状细胞(DC)的状态,此处称为DC3S,它们具有有效的抗肿瘤潜力,但表达了PD-L1检查点。IM-T9P1- ASO具有两个角色:它通过与TLR9互动并下调PD-L1,从而触发DC3的扩展,从而释放了DC3的抗肿瘤功能。这种双重作用导致T细胞肿瘤排斥。IM-T9P1-ASO的抗肿瘤功效取决于DC3S产生的抗肿瘤细胞因子白介素12(IL-12)和BATF3,这是DC发育所需的转录因子。通过同时靶向TLR9和PD-L1的结论,IM-T9P1-ASO通过DC激活来扩增抗肿瘤反应,从而导致小鼠的持续治疗功效。通过强调小鼠和人类DC之间的差异和相似性,这项研究可以为癌症患者开发类似的治疗策略。
弗里德赖希共济失调是一种无法治愈的疾病,由 frataxin (FXN) 蛋白缺乏引起,主要由 FXN 基因内含子 1 中的 GAA 重复扩增引起。在这里,我们鉴定了与 FXN 前 mRNA 第一个内含子内的两个区域互补的反义寡核苷酸 (ASO),它可以使患者成纤维细胞中的 FXN mRNA 增加约 2 倍。通过在每个区域鉴定多个重叠的 FXN 激活 ASO、两个独立的 RNA 定量分析和多个管家基因的标准化,证实了 FXN mRNA 的增加。对删除 ASO 结合位点的细胞进行的实验表明,ASO 诱导的 FXN 激活是由间接效应驱动的。 RNA 测序分析表明,两种 ASO 诱导了相似的转录组范围变化,与野生型细胞的转录组不同。这种 RNA 测序分析未识别出 ASO 之间共有的直接碱基配对脱靶基因。错配研究确定了 ASO 中 FXN 激活所需的两个富含鸟苷酸的基序 (CCGG 和 G 4 )。我们的 ASO 的磷二酰胺吗啉寡聚体类似物不会激活 FXN,这表明存在 PS 骨架介导的效应。我们的研究表明,在采用基因激活等新机制的寡核苷酸研究中,多个详细的对照实验和靶标验证非常重要。
反义寡核苷酸 (ASO) 已用于调节体内和体外精确 RNA 的表达超过 30 年 [1]。ASO 可通过两种机制发挥作用:激活 RNase H1 来切割 RNA 靶标,或从空间上阻断调节蛋白或核酸接近 RNA(图 1)。RNase H 类内切酶主要在细胞核中起作用,尽管研究表明 RNase H1 在细胞质中也有活性 [2–4]。对于 RNase H1 降解性 ASO,RNase H1 内切酶仅在 RNA 与 DNA(在这种情况下,DNA 残基是 ASO 的一部分)以异源双链形式杂交时才会特异性切割 RNA。一旦发生 RNA 分子切割,ASO 就会解离并多次循环利用以切割新的 RNA 分子 [5,6]。相比之下,立体阻断 ASO (SBO) 经过化学修饰,因此在与 RNA 靶标杂交时不会形成 RNase H1 的底物,通常是通过使用整个 ASO(DNA 除外)中的 2' 修饰 RNA 残基来实现的。相反,SBO 分子会紧密结合单个 RNA 分子,不会发生周转,从而阻碍其他生物分子在该位点进行功能性结合的能力 [ 7–11 ]。本文将重点介绍设计 RNase H1 介导的降解性 ASO 的策略。