提高处理器和加速器的每成本绩效比以往任何时候都变得更具挑战性,导致摩尔定律的减慢[22]。这种慢速下降的原因是过渡到更先进的技术节点[19]时的设计和制造成本,以及由于IO驱动器,模拟电路的缩放限制以及最近的静态随机访问记忆(SRAM)而导致此过渡的重新转换。针对这些挑战的有前途的解决方案是2.5D集成,其中多个称为chiplets的硅死模被整合到同一软件包中。可以将单个芯片设计重复使用以降低每芯片的设计成本的事实。此外,由于2.5D集成允许将不同技术内置的异质芯片集成到同一包装中,因此只有可以充分利用技术扩展的组件才能以高级和昂贵的技术节点制造。达到缩放限制的组件是成熟的低成本技术制造的。由于其经济利益,2.5D整合将其进入行业领先的公司的产品,例如NVIDIA的P100 GPU [17](仅用于高频带宽度内存(HBM))和AMD的EPYC和Ryzen CPU [23]。2.5D堆叠芯片的设计空间很大。One can decide between different packaging options [ 18 , 21 , 27 , 29 ], chiplet counts and sizes [ 9 ], chiplet placements [ 13 ], die-to-die (D2D) link imple- mentations [ 7 , 24 ] and protocols [ 1 , 3 ], inter-chiplet interconnect (ICI) topologies [ 4 , 14 , 16 , 25 , 26 ], and many more factors.更重要的是,有许多感兴趣的指标,例如面积要求,功耗,热能性能以及芯片的制造成本,或ICI的潜伏期和吞吐量。
随着芯片技术的出现,用于人工智能应用的高端封装变得越来越密集。其中,封装基板的密度也在不断提高,最近的基板倾向于采用非对称基板结构。然而,这种非对称基板会因芯片接合的加热过程而引起翘曲,因此在设计阶段控制基板中的铜剩余率以抑制翘曲是必不可少的。本文采用遗传算法来优化铜剩余率,并提出了一种考虑芯片接合时允许的翘曲值的算法流程。实际优化评估的结果证实了所提流程的优越性。
摘要:硅光子学的应用范围正在从用于数据和电信的高速收发器迅速发展到适用于许多不同市场的广泛功能,尤其是在传感和计算领域。因此,对新构建模块和增强性能的需求正在加速和多样化。在这种背景下,新材料、芯片和薄膜芯片的异构集成正变得至关重要。但要实现满足这种多样化需求的工业供应链将具有挑战性,可能需要一种新的供应链模型,在参与各方之间建立专门的标准化和测试方法。这篇评论文章讨论了硅光子学中异构集成带来的机遇和挑战,特别是未来市场增长和异构集成工艺流程的设计。
提高处理器和加速器的性能成本比以往更具挑战性,这导致摩尔定律的减速 [22]。减速的原因在于过渡到更先进的技术节点时设计和制造成本呈指数级增长 [19],同时由于 I/O 驱动器、模拟电路以及最近的静态随机存取存储器 (SRAM) 的扩展限制,这种过渡的收益不断递减。2.5D 集成是解决这些挑战的一个有前途的解决方案,其中将多个称为小芯片的硅片集成到同一封装中。单个小芯片设计可用于多种产品,这降低了每个芯片的设计成本。此外,由于 2.5D 集成允许将采用不同技术构建的异构小芯片集成到同一封装中,因此只有能够充分利用技术扩展的组件才会采用先进且昂贵的技术节点制造。已经达到扩展极限的组件则采用成熟的低成本技术制造。由于其经济效益,2.5D 集成已应用于行业领先公司的产品中,例如 NVIDIA 的 P100 GPU [ 17 ](仅适用于高带宽内存 (HBM))和 AMD 的 EPYC 和 Ryzen CPU [23]。2.5D 堆叠芯片的设计空间巨大。人们可以在不同的封装选项[18、21、27、29]、芯片数量和尺寸[9]、芯片放置位置[13]、芯片到芯片 (D2D) 链路实现[7、24]和协议[1、3]、芯片间互连 (ICI) 拓扑[4、14、16、25、26]以及其他许多因素之间进行选择。此外,还有许多不同的相关指标,例如芯片的面积要求、功耗、热性能和制造成本,或 ICI 的延迟和吞吐量。
HPC 市场上的各种产品已经采用异构集成,根据功能进行分解,混合工艺节点,或集成多个计算芯片来扩展计算资源。随着对 chiplet 集成的需求越来越大,最近出现了通过 ODSA、UCIe、OIF 等对 die-to-die 接口进行标准化以实现插入式解决方案来构建 chiplet 生态系统的努力,而之前的应用则采用专有的 die-to-die 解决方案。最近,chiplet 行业增加了 UCIe 的权重。除了 die-to-die 接口 IP 和标准的开发之外,代工厂和 OSAT 开发的先进封装技术(2.5D/3D 封装)也为实现需要高带宽和低延迟 die-to-die 接口的 chiplet 集成做出了重大贡献,以满足系统扩展的需求。
这次会议将于12月9日(星期六)开始,我们受欢迎且非常成功的教程。现在在第13年,他们针对学生,从业者或正在寻找教科书级别知识与领先当前研究之间联系的任何人。The topics for 2023 are: “Innovative Technology for Beyond 2 nm”, “CMOS+X: Functional Augmentation of CMOS for Next-Generation Electronics”, “Reliability Challenges of Emerging FET Devices”, “Advanced Packaging and Heterogeneous Integration - Past, Present & Future”, “Synapses, Circuits, and Architectures for Analog In-Memory Computing-Based Deep Neural Network Inference Hardware加速度”,“设备建模工具:从香料到科学机器学习”。在周日,将提供两门全面的短期课程:“下一代低功率和高性能计算的晶体管,互连和chiplets”和“用于高性能记忆和计算的记忆技术的未来”。简短的课程由来自行业和学术界的国际知名研究人员和活跃于这些领域的学术界组织和提出。已经仔细选择了主题和讲师,以广泛吸引IEDM参与者,并将包括适合新手和专家的材料。
事实表A*星级的微电子团队研究所,主要行业参与者具有高密度的系统包装联盟,用于异质chiplets Integration 2021年7月8日*Star的Microelectronics(IME)(IME)宣布与四个领先行业的参与者合作,与四个领先的行业组成,以组建系统中的系统(SIP)(SIP)(SIP)。ime将与Asahi-Kasei,GlobalFoundries®(GF®),Qorvo和Toray合作,以开发高密度的SIP,以用于异质性chiplets集成,可以满足5G应用中半导体行业的挑战。新成立的财团将利用IME在FOWLP/2.5D/3D包装方面的专业知识。电子系统扩展是一种行业趋势,这是由于需要提高功能和性能的需求,以较低的功耗将功能和性能打包成各种消费者和企业应用程序,例如5G,人工智能(AI)和高性能计算(HPC)应用。为了加速这一趋势,该财团已经着手进行联合开发计划,以建立异质的chiplet整合。该计划共同解决了公司的市场要求,以在包装级别集成多个系统功能并实现高级SIP。越来越多地,半导体行业正在寻求实施实施,以克服通过使用传统的单片芯片(SOC)方法或董事会级集成技术来克服系统集成的挑战。实现这一目标需要该行业应对设计,处理和材料挑战 - 协作成员的目标是在此财团项目中解决。利用3D集成技术用于5G应用中的5G应用程序,多频段操作需要5G设备来整合许多设备,例如过滤器,低噪声放大器(LNA)/ RF开关,ASICS以支持移动通信和数据传输在一系列频段上。这种趋势预计将在未来几年继续进行,并导致4G和5G手机中使用的射频前端(RFFE)模块消耗的板空间增加。3D集成是将多个设备/芯片集成在小型因子包中的理想方式。IME与财团成员合作,将3D集成技术应用于5G应用程序的小型RFFE模块。ime已投资了3D集成技术,包括通过SI-via(TSV)。在过去的十年中,IME开发了关键的过程模型,包装集成方案和设计支持,以使行业生态系统能够利用高级包装的优势以实现小型化系统。IME开发的关键过程模块包括TSV,通过silicon-Interposer(TSI),精细式多层重新分布层(RDL),微型颠簸,晶圆到晶片(W2W),以及芯片到焊接(C2W)粘合,粘合,晶粒重新构造,薄效,以及更高的交换。IME支持的软件包集成方案包括使用TSV First/Midder/上次使用3D堆叠,其次是C2C,C2W和W2W; 2.5DIC使用TSI; rdl-1st fan-out-IME支持的软件包集成方案包括使用TSV First/Midder/上次使用3D堆叠,其次是C2C,C2W和W2W; 2.5DIC使用TSI; rdl-1st fan-out-
田中教授田中教授教授生物医学工程研究生院Tohoku大学代表技术计划委员会和组织委员会,我们很高兴欢迎您参加IEEE IEEE国际3D系统整合会议2024(3DIC 2024)(3DIC 2024),该会议将在日本的Sendai和Sendai Hotel In> 252中举行,<该国际会议由IEEE电子包装协会(EPS)赞助。在2007年和2008年将前两次3D会议结合了前两次3D会议之后,于2009年在旧金山举行了第一次国际3D会议,该会议于2007年和IEEE EEEE EDS EDS EDS和2007年在Fraunhhofer和IEEE CPMT的赞助下于2003年和2007年的赞助下于2007年和2008年举行。The 2nd conference was held in Munich in 2010, the 3rd in Osaka in 2012, the 4th in San Francisco in 2013, the 5th in Cork in 2014, the 6th in Sendai in 2015, the 7th in San Francisco in 2016, the 8th in Sendai in 2019, the 9th in Raleigh in 2021, and the 10th in Cork in 2023, the respectively.今年将第11次举行会议,范围已扩大到包括3D/chiplets/ai半导体,并将有46篇论文作为一般的口头演示和海报演示。我们很自豪地宣布,我们有五位出色的主题演讲者和来自不同背景和专业知识的七位杰出的邀请演讲者。他们将在3DIC和系统领域讨论各种关键主题,为所有与会者提供丰富而多样的经验。仙台以新鲜的海鲜,美味的米饭和清酒而闻名。在3DIC 2024中,将在电子组件,材料,包装和服务领域的领先公司安装32个展位,以演示与3D/Chiplets Technologies相关的最新产品。在9月25日的第一个会议当天晚上,将在大都会仙台酒店举行宴会。您可以在宴会上享用这些美味的食物和清酒。3DIC 2024不仅涉及演示和展览,还涉及促进联系和协作。我们设计了会议,为您提供许多网络,深入讨论以及与作者,演讲者和同事在咖啡休息期间,每日午餐会和宴会的机会。我们认为,这些互动将与正式会议一样有价值,我们鼓励您充分利用它们扩展您的专业网络并向同龄人学习。我们衷心希望3DIC 2024能够取得成功,您会喜欢它。我们要感谢我们的赞助商,参展商,作者,演讲者,会议主席以及技术计划委员会,组织委员会和当地组织委员会的成员。
该工作组的目的是召集拨款申请人、来自行业和学术界的技术和政策领导者、立法者以及负责任的经济发展和监管官员,以使华盛顿州处于最佳位置,以吸引联邦拨款用于半导体技术的研究、开发和投资。联邦机构将在 2024-2025 年提供约 16 亿美元,以促进五个不同研究领域的创新:设备、工具、流程和流程集成;电力输送和热管理;连接器技术,包括光子学和射频 (RF);小芯片生态系统;以及协同设计/电子设计自动化 (EDA)。通过改善申请人之间的协调并利用我们州的独特优势,我们可以增强竞争力并强调华盛顿在这一关键领域的自然优势。
奖项项目期限:五 (5) 年目标与目的:NAPMP 旨在推动美国在先进封装领域的领导地位,并提供美国封装制造所需的技术和熟练的劳动力。在十年内,NAPMP 资助的活动加上 CHIPS 制造激励措施将建立一个充满活力、自给自足、盈利的国内先进封装行业,在美国国内可以对美国和国外生产的先进节点芯片进行适当数量的封装,并通过领先的封装能力实现创新设计和架构。结合其他 CHIPS for America 教育和劳动力努力,NAPMP 资助的活动将培养国内封装行业成功所需的多元化和有能力的劳动力。该 NOFO 的目标是通过研发实现适合美国工业采用的创新型新型先进封装流程。符合条件的项目:该 NOFO 设想了五 (5) 个研发领域的项目:(1) 设备、工具、工艺和工艺集成;(2) 电力传输和热管理;(3) 连接器技术,包括光子学和射频; (4)Chiplets生态系统;(5)联合设计/EDA。