摘要 - DNA中的DATA存储是作为档案数字数据的可能解决方案而开发的。最近,为了进一步提高基于DNA的数据存储系统的潜在能力,建议了组合复合DNA合成方法。这种方法通过利用短DNA片段试剂(称为短生物)来扩展DNA字母。短期是字母符号的构建块,每个符号由固定数量的短裤组成。因此,当读取信息时,可能缺少构成符号组成的一部分的短毛,因此无法确定符号。在本文中,我们将此类型的错误建模为一种不对称错误,并提出了可以在此设置中纠正此类错误的代码构造。我们还提供了此类错误校正代码的冗余的下限,并为我们的构造提供了明确的编码器和解码器。我们建议的误差模型也得到了对根据组合方案产生DNA的数据的分析的分析。最后,我们还提供了观察此类错误事件的概率的统计评估,这是读取深度的函数。
当前的DRL算法通常假设固定数量的可能动作,然后一次选择一个动作,从而使它们在任意较大的空间中的资源分配问题效率低下。顺序操作选择需要为所选的每个操作更新状态,这增加了决策深度,状态空间,不确定性和执行次数。这会影响算法的收敛性并减慢执行速度。此外,当前的DRL算法对于在线资源分配问题的效率不高,因为它们采用固定数量的操作,而任意数量的任务到达数量。为了应对这些挑战,我们提出了一种新颖的结合作用选择方法,使DRL算法能够同时从具有任意数量的可能动作的集合中选择一个任意数量的动作的联盟。通过在每个时间步骤做出同时决策,联盟行动选择避免了由多次更新状态更新的顺序决策引起的计算成本和较大的状态空间。我们使用在线组合资源分配问题评估了联盟行动选择和顺序行动选择方法的绩效和复杂性。结果表明,联盟行动选择方法保留了在线组合资源分配问题的各种在线交通需求到达率的最佳离线性能,而顺序动作选择方法的性能随着问题的大小的增加而降低。实验还揭示了联盟行动选择的计算复杂性比顺序作用选择要低得多。
脊髓损伤(SCI)大大降低了受影响个体的生活质量。恢复功能是患者人群的主要关注点,也是治疗干预措施的主要目标。目前,即使有越来越多的临床试验,仍然没有有效的治疗方法可以改善SCI后神经系统的结果。大量工作表明,神经茎/祖细胞(NSPC)的移植可以通过提供可以整合到受伤的宿主神经回路中的新神经元来促进受伤的脊髓的再生。尽管有这些有希望的发现,但在NSPC移植后观察到的功能恢复程度仍然适度。很明显,这种复杂损伤的治疗不能通过一种治疗方法来解决。在这次迷你审查中,我们讨论了可以与NSPC移植一起使用以促进脊髓再生的组合策略。我们首先引入生物工程和神经调节方法,并强调使用这些策略与NSPC的移植相结合。NSPC移植的未来可能包括一种多因素方法,将干细胞与生物材料和/或神经调节结合在一起,作为SCI的有希望的治疗方法。
摘要:强化学习是各个领域的重要技术,尤其是在加固学习的自动化机器学习中(AUTORL)。在组合优化中将转移学习(TL)与Autorl的集成是需要进一步研究的领域。本文同时采用Autorl和TL来有效地应对组合优化的挑战,特别是不对称的旅行推销员问题(ATSP)和顺序排序问题(SOP)。进行了统计分析,以评估TL对上述问题的影响。fur-hoverore,将auto_tl_rl算法作为一种新颖的贡献引入,结合了自动和TL方法。经验结果强烈支持这种整合的有效性,在比传统技术效率明显高得多的解决方案中,初步分析结果提高了85.7%。此外,在13个实例中减少了计算时间(即在92.8%的模拟问题中)。TL集成模型的表现优于最佳基准,证明其优越的收敛性。AUTO_TL_RL算法设计允许在ATSP和SOP域之间进行平滑的过渡。在全面的评估中,在分析的78%的实例中,Auto_TL_RL明显优于传统方法。
深度强化学习(DRL)在任务卸载问题方面越来越受欢迎,因为它可以适应动态变化并最大程度地减少在线计算复杂性。但是,在用户设备(UDS)和移动边缘计算(MEC)服务器上的各种类型的连续和离散资源约束对高效的基于DRL的任务下载策略的设计构成了挑战。假设服务器上有足够的存储资源,则基于DRL的任务折扣算法重点关注UDS的约束。此外,现有的基于多种DRL(MADRL)的任务攻击算法是同质代理,并将同质的约束视为其奖励功能的惩罚。在这项工作中,我们提出了一种新颖的组合客户端MADRL(CCM_MADRL)算法,用于在移动边缘compoting中进行任务卸载(CCM_MADRL_MEC),允许UDS决定其重新源要求,并根据UDS的要求做出组合决策。ccm_madrl_mec是任务卸载的第一种MADRL方法,即除了UDS的限制外,考虑服务器存储的ca- partical。通过利用组合动作选择,CCM_MADRL_MEC显示出优于现有基准和启发式算法的优越性收敛性。
最近,执行计算密集型任务的移动应用程序激增,例如视频流、数据挖掘、虚拟现实、增强现实、图像处理、视频处理、人脸识别和在线游戏。然而,平板电脑和智能手机等用户设备 (UD) 执行任务计算需求的能力有限。移动边缘计算 (MEC) 已成为一种有前途的技术,可以满足 UD 日益增长的计算需求。MEC 中的任务卸载是一种通过在 UD 和 MEC 服务器之间分配任务来满足 UD 需求的策略。深度强化学习 (DRL) 在任务卸载问题中越来越受到关注,因为它可以适应动态变化并最大限度地降低在线计算复杂度。然而,UD 和 MEC 服务器上各种类型的连续和离散资源限制对设计高效的基于 DRL 的任务卸载策略提出了挑战。现有的基于 DRL 的任务卸载算法侧重于 UD 的约束,假设服务器上有足够的存储资源。此外,现有的基于多智能体 DRL(MADRL)的任务卸载算法是同质智能体,并将同质约束视为其奖励函数中的惩罚。我们提出了一种新颖的组合客户端-主 MADRL(CCM_MADRL)算法,用于 MEC 中的任务卸载(CCM_MADRL_MEC),该算法使 UD 能够决定其资源需求,并让服务器根据 UD 的需求做出组合决策。CCM_MADRL_MEC 是任务卸载中第一个除了考虑 UD 中的约束之外还考虑服务器存储容量的 MADRL。通过利用组合动作选择,CCM_MADRL_MEC 表现出优于现有 MADDPG 和启发式算法的收敛性。
我们研究了两个最近的组合合同设计模型,该模型突出了合同设计中可能出现的不同复杂性的不同来源,在此校长将代价高昂的项目执行给他人。在这两种设置中,本金都无法观察代理人的选择,只有项目的结果(成功或失败),并使用合同来激励代理商,该合同是在项目成功时指定向代理商指定付款的付款计划。我们提出了解决开放问题并提高我们对两种设置计算复杂性的理解的结果。在多代理设置中,该项目被委派给了一个代理团队,每个代理商都选择是否付出努力。成功概率函数映射了施加努力为项目成功概率的任何子集。对于supporular成功概率函数的家族,Dütting等人。[2023]建立了与最佳合同的多时间常数因子近似,并且是否打开该问题是否允许PTA。我们通过表明没有多个算法可以保证比0更好的情况下回答这个问题。7-最佳合同。对于XOS函数,它们给出了带有值和需求查询的多时间常数近似值。我们仅使用值查询,就无法获得任何常数近似。在多进取设置中,该项目被委派给单个代理,后者可以采取一组措施的任何子集。在这里,成功概率函数将任何子集映射到了项目成功的概率。Dütting等。[2021a]显示了一种用于计算总替代替代概率函数的最佳合同的多时间算法,并表明该问题对于下函数函数是NP-HARD。我们通过表明该问题不承认任何恒定因子近似来进一步增强这种硬度结果。此外,对于更广泛的XOS函数,我们建立了获得任何ε> 0的n -1/2+ε-approximation的硬度。< / div>
科学背景。离散的几何形状和组合优化具有丰富的相互作用。对于一般输入而言,许多优化问题是NP的,但对于受限但重要的输入类别,例如,对于某些图和矩阵类,或几何结构起作用时,变得有效/近似于近似。图形及其图纸是数学和计算机科学以及该项目中研究的核心对象。我们考虑将顶点表示为平面点的图形的图纸,边缘用简单的曲线(或线段,直线图中的线段)表示连接点的图形。在简单的图纸中,任何两条曲线最多在一个共同点中相交。在图表及其图纸上的优化问题的背景下,完整的图构成了一个特别有趣且具有挑战性的研究对象:例如,交叉数问题(至少有图形的任何图形至少有多少个交叉点)对于一般图表[4]。但是,完整图的特殊情况不太可能在计算上很难(赋予著名的Harary-Hill猜想[1,6])。同样,C颜色的交叉数问题(发现最小的k,因此给定图形图的边缘可以以c颜色为c颜色,以使单色交叉数的数量最多为k)是已经用于C = 2的通用图[8],而完整图的绘图的复杂性状态为C = 2 [8]。完整图的少数已知硬度结果之一是完整图K n的给定简单绘制是否包含≥k边缘的平面亚绘制[3]。K N的直线图的相应问题很容易,因为每个最大平面亚绘制都是三角剖分,也是最大的。对简单图纸及其上的问题的研究与相交图密切相关,因为图形的每个(简单)绘图D诱导了相交图。因此,识别此类图的结构特性是迈向改进优化算法的有希望的步骤。
1伦敦帝国学院,英国伦敦帝国学院2先知设计,南旧金山,美国加利福尼亚州,美国3 F. Hoffmann-la Roche Ltd,巴塞尔,瑞士,瑞士4默克公司,南旧金山,加利福尼亚州南旧金山5美国马萨诸塞州剑桥大学的自然和人工智能,美国马萨诸塞州剑桥市9号大街和哈佛大学,美国马萨诸塞州剑桥市10哈佛大学数据科学倡议,美国马萨诸塞州剑桥
纤维化与杜氏肌营养不良症 (DMD) 中的肌肉功能受损有关。我们报告了对营养不良患者和小鼠组织的观察结果,支持一种解释 DMD 中纤维化的模型,该模型依赖于补体和 WNT 信号通路之间的串扰以及两种细胞类型的功能相互作用。纤维脂肪形成祖细胞和巨噬细胞在发炎的营养不良肌肉中繁殖,通过分泌 C 1 补体复合物的不同亚基充当 WNT 活性的组合源。反应性细胞(如纤维脂肪形成祖细胞)中 WNT 信号的异常激活会导致纤维化。事实上,在 DMD 小鼠模型中,药物抑制 C 1 r/s 亚基可减轻 WNT 信号通路的激活,降低纤维脂肪祖细胞的纤维化特征,并改善营养不良表型。这些研究为肌营养不良症纤维化的分子和细胞机制提供了新的见解,并为新的治疗策略开辟了道路。