摘要:相似的药物分子通常具有相似的特性和活性。因此,量化分子相似性对于药物发现和优化至关重要。在这里,我回顾了我所在跨学科网络 NCCR TransCure 内开发的使用分子相似性测量的计算方法,该网络研究离子通道和膜转运蛋白的生理学、结构生物学和药理学。我们设计了一种 3D 分子形状和药效团比较算法,通过骨架跳跃优化弱和非选择性抑制剂,并发现了离子通道 TRPV6 和 TRPM4、内源性大麻素膜转运以及二价金属转运蛋白 DMT1 和 ZIP8 的强效和选择性抑制剂。我们通过将不同分子指纹的分子相似性搜索与 ChEMBL 数据库中的靶标注释化合物相结合来预测脱靶效应。最后,我们创建了反映分子相似性的交互式化学空间图,以方便筛选化合物的选择和筛选结果的分析。这些不同的工具可在线获取,网址为 https://gdb.unibe.ch/tools/。
AEF0217 的 1/2 期临床试验是一项随机、双盲、平行研究,在患有唐氏综合症的年轻人(18 至 35 岁之间)中,每天一次治疗 28 天后,比较一剂 AEF0217(0.2 毫克口服剂量)与安慰剂的效果。该试验的主要目的是评估 AEF0217 的安全性和耐受性,这对于脆弱的唐氏综合症患者群体尤为重要。次要和探索性目标是研究 AEF0217 对唐氏综合症年轻人行为障碍的药代动力学和疗效。这项研究由西班牙巴塞罗那德尔马医院医学研究所 (HMRIB) 的 de la Torre Fornell 教授(首席研究员)和西班牙马德里公主医院的 Real de Asua 博士的团队开展,研究对象为 29 名患有轻度至中度智力障碍的唐氏综合症年轻人。还研究了 AEF0217 治疗的效果与 APOE4 基因型(APOE4 阳性与 APOE4 阴性)的关系。这种基因标记已被证明与内源性大麻素生理学和患阿尔茨海默病的易感性有关。
摘要:神经退行性疾病的发作涉及病理机制的复杂相互作用,包括蛋白质聚集,氧化应激和自噬受损。本综述着重于神经退行性疾病中氧化应激与自噬之间的复杂联系,突出了自噬作为疾病发病机理的关键。活性氧(ROS)在细胞稳态和自噬调节中起双重作用,并破坏了氧化还原信号导致神经变性的氧化物。NRF2途径的激活代表了一种关键的抗氧化剂机制,而自噬通过降解改变的细胞成分来保持细胞稳态。p62/SQSTM1,NRF2和KEAP1之间的相互作用是细胞应激反应必不可少的调节途径,其失调会导致自噬和骨料积累受损。靶向NRF2 -P62/SQSTM1途径有望治疗干预,减轻氧化应激和保留细胞功能。此外,本综述探讨了内源性大麻素系统与NRF2信号传导的潜在协同作用。需要进一步的研究来阐明所涉及的分子机制并制定针对神经变性的有效治疗策略。
开发针对多巴胺受体 D 2 的光亲和探针以确定帕金森病药物的靶点作者:Spencer T. Kim 1、Emma J. Doukmak 1、Raymond G. Flax 1、Dylan J. Gray 1、Victoria N. Zirimu 1、Ebbing de Jong 3、Rachel C. Steinhardt 1,2,4摘要:多巴胺通路控制着生理和行为中非常重要的方面。这些通路中具有治疗重要性并且研究最深入的受体之一是多巴胺受体 D 2 (DRD2)。遗憾的是,使用传统的分子生物学技术很难研究 DRD2,而且大多数针对 DRD2 的药物是许多其他受体的配体。在这里,我们开发了能够使用光亲和标记与 DRD2 共价结合以及提供用于检测或亲和纯化的化学手柄的探针。这些探针在传统的生化测定中表现得像良好的 DRD2 激动剂,并且能够在细胞和受体标记的化学生物学测定中发挥作用。使用探针对大鼠全脑进行标记和亲和力富集,可以对探针的相互作用蛋白进行蛋白质组学分析。对命中结果的生物信息学研究表明,探针结合了帕金森病网络中的非典型靶向蛋白以及逆行内源性大麻素信号、神经元一氧化氮合酶、毒蕈碱乙酰胆碱受体 M1、GABA 受体和多巴胺受体 D 1 (DRD1) 信号网络。后续分析可能会深入了解该通路与帕金森病症状的具体关系,或为治疗提供新的靶点。这项工作强化了这样一种观点,即化学生物学和基于组学的方法相结合可以提供分子“相互作用组”的广阔图景,也可能深入了解药物观察到的效应的多效性,或者可能表明新的应用。关键词:多巴胺受体、光交联、光亲和标记 (PAL)、蛋白质组学、生物信息学、内源性大麻素途径、GABA 受体、毒蕈碱受体 M1、普拉克索、罗匹尼罗、DRD2 1. 简介 从欣快到精神病的生理状态均受多巴胺神经系统的神经解剖学通路支配。1 组成该系统的多巴胺能神经元通过将神经递质多巴胺与其受体结合而发挥作用。这些神经元表达的多种多巴胺受体亚型控制着行为的不同方面,据推测各个亚型会结合起来并形成不同的生化途径。2,3 但不幸的是,用药物或其他非内源性刺激物选择性地靶向单个多巴胺受体亚型(更不用说通路)极其困难。 1 从通过小分子引导神经化学的角度来看,多巴胺能系统控制的生理反应种类繁多,再加上缺乏选择性药物,使得药物/探针开发极具挑战性。多巴胺受体通常有 5 种亚型,即 D 1-5 ,它们又分为两个家族:D 1 样受体(D 1 和 D 5 )和 D 2 样受体(D 2-4 ),其中 D 1 和 D 2 受体表现出
醋酸,丙酸酯和丁酸酯的短链脂肪酸(SCFAS)是饮食纤维的肠道微生物发酵的主要产物,通过肠脑轴涉及微调脑功能。然而,SCFA在调节几种自主脑功能的下丘脑神经元网络中的影响仍然未知。使用NMR光谱法,我们检测到肥胖的瘦素基因敲除ob/ob小鼠的脑乙酸盐浓度降低,与瘦野生型同窝仔相比。因此,我们研究了乙酸盐对乙蛋白/低钙蛋白神经元(以下称为OX或OX-A神经元)的作用,这是调节能量稳态的低丘脑神经元的子集,我们在先前的研究中表征了瘦素缺乏瘦素和肥胖型肥胖型肥胖症的影响,而这些研究被过度激活。我们发现,乙酸盐会减少与OB/ OB小鼠中OREXIN神经元活性降低的伴随中的食物感染。通过评估食物智能行为和Orexin-A/c-Fos免疫反应性以及HCRT -EGFP神经元中的贴片钳记录,预脱蛋白mRNA的量化以及对GPR-43的nolabeling contification coppliation。我们的数据提供了有关乙酸或复杂碳水化合物对能量摄入和体重的慢性饮食补充作用机制的新见解,这可能部分是通过抑制甲状腺素能神经元活性介导的。
摘要:从历史上看,人类一直在娱乐和医疗目的中使用大麻。如今,基于大麻的产品由于对几种综合征和疾病的利益影响,已经获得了科学兴趣。 大麻素的生物学活性本质上是由于与内源性大麻素系统的相互作用,而斑马鱼(Danio rerio)是一个非常著名的且功能强大的体内模型,用于研究这种特异性相互作用。 该研究的目的是研究不同剂量的大麻饱足于全剂量的全剂量的影响[溶解在二甲基亚氧化二甲基硫氧化二甲基硫氧化物(DMSO)对斑马卵的孵化力,胚胎后既存的生存,幼虫的幼虫运动行为和mRNA基因表达的影响。 结果表明缺乏毒性,并且在治疗胚胎孵化和存活率之间没有观察到显着差异。 此外,与对照组和DMSO处理组相比,在最高剂量(含有1.73 nm和22.3 nm的大麻提取物)(含有1.73 nm和22.3 nm的大麻提取物)中显示了运动增加的幼虫。 此外,QRT-PCR分析表明,最高剂量的大麻诱导了CNR1和CNR2大麻素受体的过表达。 总而言之,斑马鱼幼虫向整个大麻提取物的阐述对胚胎发育和生存没有负面影响,并增强了幼虫的运动性能。 这些发现可能会在人类药理学以及其他动物部门开放可能的大麻饱足量。如今,基于大麻的产品由于对几种综合征和疾病的利益影响,已经获得了科学兴趣。大麻素的生物学活性本质上是由于与内源性大麻素系统的相互作用,而斑马鱼(Danio rerio)是一个非常著名的且功能强大的体内模型,用于研究这种特异性相互作用。该研究的目的是研究不同剂量的大麻饱足于全剂量的全剂量的影响[溶解在二甲基亚氧化二甲基硫氧化二甲基硫氧化物(DMSO)对斑马卵的孵化力,胚胎后既存的生存,幼虫的幼虫运动行为和mRNA基因表达的影响。结果表明缺乏毒性,并且在治疗胚胎孵化和存活率之间没有观察到显着差异。此外,与对照组和DMSO处理组相比,在最高剂量(含有1.73 nm和22.3 nm的大麻提取物)(含有1.73 nm和22.3 nm的大麻提取物)中显示了运动增加的幼虫。此外,QRT-PCR分析表明,最高剂量的大麻诱导了CNR1和CNR2大麻素受体的过表达。总而言之,斑马鱼幼虫向整个大麻提取物的阐述对胚胎发育和生存没有负面影响,并增强了幼虫的运动性能。这些发现可能会在人类药理学以及其他动物部门开放可能的大麻饱足量。
内源性大麻素(Ecbome)是扩展的内源性大麻素系统(ECS),研究表明,该系统与该系统如何调节酒精诱导的神经蛋白流量之间存在联系。使用有条件的敲除(CKO)小鼠在多巴胺神经元(DAT-CNR2)中选择性缺失2型2型受体(CB2RS)和小胶质细胞(CX3CR1-CNR2)中,我们研究了CB2RS如何调节行为和神经蛋白毒素诱导的cb2RS。的行为测试,包括运动和车轮跑活动,旋转rod性能测试以及酒精偏好测试,用于评估酒精诱导的行为变化。使用ELISA分析,我们研究了促炎细胞因子,肿瘤坏死因子-α(TNF-α),白介素-6(IL-6),白介素-1α(IL-1α)(IL-1α)和脑粒属1β(IL-1β(IL-1β)的水平。发现表明运动活性,车轮运行和旋转性性能活动受到多巴胺神经元和小胶质细胞中CB2RS的细胞类型缺失的显着影响。非选择性CB2R激动剂Win 55,212-2,野生型和细胞类型的CB2R CKO小鼠的酒精偏好降低。此外,结果表明,CB2RS本身的细胞类型的特异性缺失,并将酒精施用至CB2R CKO小鼠增加了海马中促炎性细胞因子的表达。这些发现表明CB2RS参与了调节酒精引起的行为和免疫改变。
慢性疼痛影响着全球数百万人,迫切需要新的治疗方法。确定新型镇痛策略的一种方法是了解导致人类遗传性疼痛不敏感障碍的生物功能障碍。在本文中,我们报告了最近发现的大脑和背根神经节表达的 FAAH-OUT 长链非编码 RNA (lncRNA) 基因如何调节相邻的关键内源性大麻素系统基因 FAAH,该基因编码可降解花生四烯酸酰胺的脂肪酸酰胺水解酶。我们证明 FAAH-OUT lncRNA 转录的中断会导致 FAAH 启动子内发生 DNMT1 依赖的 DNA 甲基化。此外,FAAH-OUT 包含一个保守的调控元件 FAAH-AMP,可作为 FAAH 表达的增强子。此外,通过对患者来源的细胞进行转录组分析,我们发现了因 FAAH-FAAH-OUT 轴破坏而失调的基因网络,从而为理解观察到的人类表型提供了连贯的机制基础。鉴于 FAAH 是治疗疼痛、焦虑、抑郁和其他神经系统疾病的潜在靶点,对 FAAH-OUT 基因调节作用的新认识为未来基因和小分子疗法的开发提供了平台。
摘要:阿片类受体激动剂(例如吗啡)对于治疗慢性和严重疼痛非常有效。但是,宽容可以长期使用。尽管关于阿片类药物耐受性的病理生理机制有很多信息,但仍未完全阐明。建议的阿片类药物耐受性机制包括阿片受体脱敏,敏感性G蛋白的降低,激活有丝分裂原激活的蛋白激酶(MAPK),改变的细胞内信号传导途径,包括一氮氧化物,包括一氮的激活,包括乳脂蛋白(MTOR)的哺乳动物靶标。降低阿片类药物耐受性并增加镇痛潜力的一种方法是使用低剂量。大麻素与阿片类药物的组合已被证明可以表现出阿片类药物剂量的减少。实验研究揭示了内源性大麻素系统和阿片类药物抗伤害感受的相互作用。大麻素和阿片类受体系统在形成镇痛作用时使用常见途径,并通过G蛋白偶联受体(GPCR)证明其活性。大麻素药物在细胞内的多个不同水平上调节阿片类镇痛活性,从直接受体关联到受体后相互作用,通过共享信号转导途径。本综述总结了数据表明,结合大麻素和阿片类药物可能能够产生长期的镇痛作用,同时阻止阿片类镇痛耐受性。
抽象的目的是破译主要的人乳寡糖(HMO),2'-五甲基乳酸(2'FL)的机制,可以影响小鼠喂养高脂饮食(HFD)喂养的体重和脂肪质量增加。我们想阐明2'FL代谢作用是否与肠粘膜产生和分泌,粘蛋白糖基化和降解以及肠道微生物群,粪蛋白蛋白质组和内源于内源于内球蛋白(ECB)系统的调节有关。结果2'fl补充可降低HFD诱导的肥胖症和葡萄糖不耐症。这些作用伴随着肠道粘液层的几种变化,包括粘液产生和成分,以及分泌和跨膜粘蛋白,糖基转移酶以及涉及粘液分泌的基因的基因表达。此外,2'fl增加了参与粘蛋白糖降解的细菌糖基水解酶。These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides , different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system.我们还研究了瘦和肥胖人类的粪便蛋白质组织,发现比较瘦小小鼠的类似变化。结论我们的结果表明,HMO 2'FL通过调节粘液层,肠道微生物群和欧洲央行系统来影响宿主代谢,并提出粘液层作为预防肥胖和相关疾病的新潜在靶标。