在过去的几十年中,电子行业的中心主题是通过减小晶体管面积来增加晶体管密度,这是摩尔定律的要求。从平面 CMOS 技术到 FinFET 技术的范式转变将这种面积缩小趋势延续到了 20nm 以下时代。FinFET 中晶体管静电的增强使栅极长度和接触多晶硅间距 (CPP) 进一步缩小。同时,对面积缩小的追求也来自宽度(或鳍片间距)和高度尺寸。通过减小鳍片间距和增加鳍片高度,可以提高 FinFET 的电流密度。因此,电路设计人员可以使用更少的鳍片来满足相同的电流要求并同时节省面积,这种方案通常称为“鳍片减少”。然而,上述方法开始显示出收益递减,并面临过多的制造挑战。为了进一步提高电流密度并减小面积,未来预计将使用具有高迁移率的新型通道材料(例如 SiGe)和/或具有更好静电的新结构(例如插氧化物 FinFET (iFinFET)、Gate-All-Around FET、Nanosheet FET)。
在过去的几十年中,电子行业的中心主题是通过减小晶体管面积来增加晶体管密度,这是摩尔定律的要求。从平面 CMOS 技术到 FinFET 技术的范式转变将这种面积缩小趋势延续到了 20nm 以下时代。FinFET 中晶体管静电的增强使栅极长度和接触多晶硅间距 (CPP) 进一步缩小。同时,对面积缩小的追求也来自宽度(或鳍片间距)和高度尺寸。通过减小鳍片间距和增加鳍片高度,可以提高 FinFET 的电流密度。因此,电路设计人员可以使用更少的鳍片来满足相同的电流要求并同时节省面积,这种方案通常称为“鳍片减少”。然而,上述方法开始显示出收益递减,并面临过多的制造挑战。为了进一步提高电流密度并减小面积,未来预计将使用具有高迁移率的新型通道材料(例如 SiGe)和/或具有更好静电的新结构(例如插氧化物 FinFET (iFinFET)、Gate-All-Around FET、Nanosheet FET)。
在过去的几十年中,电子行业的中心主题是通过减小晶体管面积来增加晶体管密度,这是摩尔定律的要求。从平面 CMOS 技术到 FinFET 技术的范式转变将这种面积缩小趋势延续到了 20nm 以下时代。FinFET 中晶体管静电的增强使栅极长度和接触多晶硅间距 (CPP) 进一步缩小。同时,对面积缩小的追求也来自宽度(或鳍片间距)和高度尺寸。通过减小鳍片间距和增加鳍片高度,可以提高 FinFET 的电流密度。因此,电路设计人员可以使用更少的鳍片来满足相同的电流要求并同时节省面积,这种方案通常称为“鳍片减少”。然而,上述方法开始显示出收益递减,并面临过多的制造挑战。为了进一步提高电流密度并减小面积,未来预计将使用具有高迁移率的新型通道材料(例如 SiGe)和/或具有更好静电的新结构(例如插氧化物 FinFET (iFinFET)、Gate-All-Around FET、Nanosheet FET)。
GlobalFoundries® (GF®) 的 12LP 和 12LP+ AI 加速器解决方案可以帮助解决这些内存和功率瓶颈问题,同时加速 AI 应用。这两款基于 FinFET 的解决方案提供 1 GHz 以上的性能,并采用专用 AI 创新,可显著提高功率效率和面积优势。12LP+ 以 GF 成熟的 14LPP/12LP FinFET 解决方案为基础,GF 已出货超过一百万片此类晶圆。
多晶硅加速计、安全气囊传感器的基础、静电驱动微电机 IC 处理的压电麦克风 世界上最小(2000 年)栅极长度晶体管(15nm) 第一个 finFET 3D 晶体管之一
技术缩放已大大增加,并且它改善了 VLSI 芯片的功率、性能和面积。最近,7 纳米 FinFET 技术广泛用于高性能处理器和片上系统。当今的最新工艺,例如 7 纳米技术节点,使用了许多“新”技术来提高其性能和 VLSI 芯片的密度。FinFET 现在是 CMOS 晶体管的常见结构。中段线路 (MOL) 被引入以连接前端线路层和后端线路 (BEOL) 层。MOL 和 BEOL 中的局部互连层使用 EUV 光刻来提高其可布线性和密度。另一方面,半全局互连层使用 193i 自异化双重图案 (SADP) 来平衡制造成本和密度。在开始电路设计之前了解 FinFET 工艺的特点非常重要,因为它与常规平面工艺有许多不同。使用“真实”工艺设计套件 (PDK) 非常昂贵,而且很难获得访问许可。因此,“可预测”的 PDK 对于 VLSI 教育和研究都非常重要。ASAP7 是针对 7 纳米技术节点的“可预测”PDK 之一,由亚利桑那州立大学与 ARM Ltd. 合作提供 [1]。它包括定制设计流程和自动化数字设计流程,因此学习最先进的 FinFET 工艺中的这些设计流程非常有用。但是,他们仅为 Cadence Innovus 提供用于布局布线 (P&R) 的技术文件。Innovus 是一种主要的 P&R EDA,然而,Synopsys IC Compiler 也是另一个主要的 P&R 工具。本文报告了使用 IC Compiler 进行 P&R 的 ASAP7 补充 PDK。此补充 PDK 包括 Synopsys StarRC 技术文件,用于实现寄生感知 P&R。此补充 PDK 旨在添加第二种选择
第 1 部分:执行摘要和范围简介集成电路发明 60 多年来,一直有人定期预测摩尔定律将终结。虽然设计和工艺技术方面正在进行重大创新,以继续推动向下一个节点的发展,但摩尔定律的经济效益即将终结,先进节点的一些关键性能指标正在趋于稳定,正如商业杂志《经济学人》2016 年 3 月 12 日的一篇文章所描述的“摩尔定律饱和”(图 1.1)。半导体行业正在实施 EUV、FinFET 和 FinFET 后继者。5 纳米节点已处于早期生产阶段,3 纳米节点即将到来。摩尔博士自己对摩尔定律技术终结的预测正在接近目标年份。2016 年 3 月 12 日文章中的信息在今天仍然具有现实意义。
三栅连接粉末的非平面3D结构使它们能够缩放到22nm及以后,并且具有更好的性能。但是鳍宽度的变化对设备性能有影响。在本文中,已经评估了各种鳍片宽度对无连接三栅极鳍片的影响。对不同的设备电气参数,例如电流,关闭电流,I ON /I OFF,阈值电压,子阈值斜率,DIBL,跨导率进行了不同的鳍宽度和分析。结果表明,对于长通道设备,以较高的I ON /I OFF和较小的子阈值斜率值,DIBL的较小值获得了更好的性能,而对于短通道长度设备,由于较小的鳍片宽度较小,由于较小的鳍片宽度,由于降低了较小的鳍片宽度,因此较小的下端斜率和DIBL和IN /I ON /I ON /I ON /I ON /I off比例提高。
许多参数 物理驱动的参数 拟合参数 参数提取可能相当麻烦 几乎不可能通过几何形状和掺杂分布进行设备优化 模型开发工作量很大 模型可用性有限(DG、TriGate、FinFET、GAAFET 等) 可扩展性值得怀疑 量子效应 非局部效应
14 172 Object Detection in Computer Vision: A Comparative Analysis of Advanced Computer Vision Models 15 175 The Protxl Hybrid CNN-LSTM Ensemble Deep Predictor For Protein Structure Prediction 16 180 Introducing an Ensemble method to Phish Guard: A Robust Stacked Ensemble Defense System Against Web Spoofing 17 181 A Hybrid Model for Cold Start Article Recommendations Leveraging Community Detection and Topic Analysis 18 231 An AI Based Conversational System for Emotional Health Support使用BERT分类器和Palm LLM模型19 240根据症状使用机器学习与聊天机器人的症状进行预测疾病20 241研究瑜伽姿势姿势识别和使用机器学习技术进行识别和分类21 252低功率ALU使用基于FinFET的绝热逻辑设计基于FinFET Alu的设计22222222222222222222222222222222222222222222202年度推荐的疾病使用语言学的coptions