▪ 1 型 SMA 是最常见的类型,影响 6 个月以下的婴儿。患者会感到严重虚弱,无法独自坐立。他们还可能出现呼吸困难和吞咽困难,头部控制能力差。如果不进行治疗,许多患者可能因呼吸衰竭而无法活过 2 岁。
脊髓肌肉萎缩(SMA)是一种由生存运动神经元1(SMN1)基因致病性变化引起的常染色体隐性神经退行性运动神经元。新生儿筛查(NBS)旨在识别SMN1中纯合缺失的患者,该患者约为95%的病例。SMA在临床上是可变的,从出生到成年的发病年龄不等。SMA I型,也称为Werdnig-Hoffman病,占患有低调,呼吸和喂养困难后不久或出生后不久或出生后的一半以上。 大多数受影响的个体中存在舌头痴迷。 没有治疗,死亡通常发生在2岁之前。 疾病的严重程度被相关基因SMN2的副本数量减弱。 具有三个或更多副本的SMN2的个体,较晚的婴儿(SMA 2型),童年(SMA 3型)或成人发作(SMA IV)。 对于用两三个副本SMN2识别的婴儿,在6周龄之前的遗传诊断,评估和治疗起始的快速确认对于最佳结果至关重要。 最严重的形式(SMA型0)与外显子7或整个基因中的较大缺失有关。SMA I型,也称为Werdnig-Hoffman病,占患有低调,呼吸和喂养困难后不久或出生后不久或出生后的一半以上。大多数受影响的个体中存在舌头痴迷。没有治疗,死亡通常发生在2岁之前。疾病的严重程度被相关基因SMN2的副本数量减弱。具有三个或更多副本的SMN2的个体,较晚的婴儿(SMA 2型),童年(SMA 3型)或成人发作(SMA IV)。对于用两三个副本SMN2识别的婴儿,在6周龄之前的遗传诊断,评估和治疗起始的快速确认对于最佳结果至关重要。最严重的形式(SMA型0)与外显子7或整个基因中的较大缺失有关。
。cc-by-nc-nd 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审证明)预印版本的版权所有者此版本发布于2021年9月22日。 https://doi.org/10.1101/2021.09.16.21263132 doi:medrxiv preprint
Eteplirsen于2016年9月获得美国食品药品监督管理局(FDA)的批准,用于治疗DMD的DMD,患有确认突变的DMD基因突变,该基因可以跳过51外显子。使用替代端点加速批准,批准了这种指示:在某些患者中观察到的骨骼肌肌营养不良蛋白的增加。FDA标签包括以下声明:“该迹象的持续批准可能取决于验证验证验证性试验的临床收益。”在FDA批准之前,FDA的周围和中枢神经系统药物咨询委员会举行了一次会议,并投票反对Eteplirsen作为DMD的批准。在观察到的肌营养不良蛋白是否会带来临床上有意义的好处,存在许多不确定性。
摘要:肌肉营养不良(MDS)是肌病的异质群,其特征是进行性肌肉无力导致心脏或呼吸衰竭导致死亡。MD是由参与肌肉纤维发育和组织的基因突变引起的。到目前为止,已经开发了几种具有MD相关基因突变的亚型模型。与啮齿动物一起,斑马鱼是用于重现MD的最流行的动物模型之一,因为与人类基因组具有高序列同源性及其遗传性可操作性。本综述描述了MD的最重要的斑马鱼突变体模型以及用于生成和表征所有这些有价值的转基因线的最先进的工具。通过将突变引入具有不同遗传技术的肌肉特异性基因,例如(i)N-乙基n-硝基库(ENU)治疗,(ii)注入了基于(III)TOL2 TOL2 TOR2 TORMES,(III)TALENEN,(IV)TALEN,(IV)TALEN,(IV)TALEN,(IV)TALEN,(IIV)。所有这些模型都被广泛用于研究肌肉发育和功能或了解MDS的致病机制。还开发了几种工具来通过检查(i)运动行为,(ii)肌肉结构,(iii)氧化应激以及(iv)线粒体功能和动力学来表征这些斑马鱼模型。此外,基于在肌肉特异性启动子或响应元素控制下荧光报告蛋白表达的活物生物传感器模型已被发现是在单个肌肉纤维水平上遵循分子动力学的强大工具。因此,MD的斑马鱼模型也可以成为寻找能够阻止或减慢疾病进展的新药或基因疗法的强大工具。
脊髓肌肉萎缩(SMA)是一种罕见的遗传神经肌肉疾病,最严重的病例影响了婴儿和幼儿。1,2 SMA发病率约为15,000分中的15,000分之一,在美国(美国)每年约有500例新的SMA病例。3 4 SMA的最常见原因是在5q染色体上的生存运动神经元1(SMN1)基因的等位基因的纯合缺失或缺失和突变。5-7 SMN1创建生存运动神经元(SMN)蛋白,这是一种对运动神经元发育必不可少的蛋白质。尽管生存运动神经元2(SMN2)基因也会产生SMN蛋白,但只有少量的蛋白质才能起作用。SMN2复制的数量调节了SMA的严重程度,但没有SMN1的患者的SMN蛋白水平不足,而不管SMN2拷贝的数量多少。8这种缺乏会导致运动神经元的不可逆变性,这导致肌肉无力,并防止患者达到运动里程碑或保持运动功能。1
治疗;诊断;症状;遗传学。1. 引言杜氏肌营养不良症 (DMD) 是一种 X 连锁隐性疾病,由编码肌营养不良蛋白的 DMD 基因突变引起。DMD 的病理特征是细胞骨架蛋白的完全缺失 [1]。DMD 的临床特征是进行性肌无力,肌肉脆性主要分布在近端肢体、颈部和胸部 [2]。DMD 是最常见的肌营养不良症,也是最常见的致命神经肌肉疾病之一,每 3,500 名新生男婴中就有 1 名患有此病 [3]。临床表现始于儿童早期,伴有进行性肌肉萎缩和无力,最终导致死亡。蛋白质缺陷在出生时就存在,但通常直到出生后第二年或第三年才会在临床上观察到并诊断出来。这种疾病最终导致患者在 12 岁左右无法行走,需要使用轮椅,肌肉无力导致严重的脊柱侧弯,并最终在 25 岁左右因心脏和/或呼吸衰竭而死亡,尤其是那些不选择呼吸机支持的患者 [2]。人类 DMD 基因位于 Xp21.2 位点,主要在骨骼肌中产生杆状细胞质结构蛋白,在心肌、平滑肌、脑神经细胞和视网膜中存在同工型 [4–6]。人类的 DMD 基因为 2.3 Mb,有 79 个外显子,产生 14 kb RNA 和 427 kDa 蛋白质 [5,7,8]。三分之一的 DMD 病例是由新生突变引起的,三分之二的病例有家族史,通常是女性携带者 [9]。贝克尔肌营养不良症 (BMD) 是一种不太严重的肌营养不良症,症状与 BMD 相似,但进展较慢且不太严重 [10]。统计分析发现,DMD 的全球患病率是 BMD 的三倍 [11]。全球 DMD 患病率约为每 100,000 名男性中有 7.1 人,而普通人群中每 100,000 人中有 2.8 人。DMD 的发病率为每 100,000 人中有 19.8 人
杜氏肌营养不良症 (DMD) 是一种由肌营养不良蛋白基因 ( DMD ) 突变引起的致命神经肌肉疾病。之前,我们应用 CRISPR-Cas9 介导的“单切”基因组编辑来纠正 DMD 动物模型中的多种基因突变。然而,有效的体内基因组编辑需要高剂量的腺相关病毒 (AAV),这给临床应用带来了挑战。在本研究中,我们将 Cas9 核酸酶包装在单链 AAV (ssAAV) 中,将 CRISPR 单向导 RNA 包装在自互补 AAV (scAAV) 中,并将这种双 AAV 系统递送到 DMD 小鼠模型中。有效基因组编辑所需的 scAAV 剂量至少比 ssAAV 低 20 倍。接受全身治疗的小鼠显示肌营养不良蛋白表达恢复,肌肉收缩力改善。这些发现表明,使用 scAAV 系统可以显著提高 CRISPR-Cas9 介导的基因组编辑的效率。这代表着基因组编辑在 DMD 治疗转化方面取得了重要进展。