公共行政部门货物和服务采购协议体系(CONSIP SpA),根据第 31 条规定。法律第26条488/1999 或区域集合机构以更有利的经济条件授予本次招标中提及的产品供应,除非中标人提出将其报价调整为最有利的报价; 采购机构在实际实施管理活动时出于动机的决定,导致全部排除或部分使用招标产品; 市场条件发生变化(例如,获奖设备在新的创新设备投放市场后变得过时,获奖设备进行技术更新的情况除外); 由于意外和不可预见的原因,已预见到的相关医疗外科程序发生改变;
作为应对 SARS-CoV-2 大流行的措施,候选疫苗的开发和临床试验评估工作进展迅速,随后作为大规模疫苗接种活动的一部分部署。然而,SARS-CoV-2 病毒已显示出变异和发展变种的能力,这可能会改变流行病学特性,甚至可能改变疫苗的有效性。高效疫苗的广泛部署可能会迅速对 SARS-CoV-2 病毒施加选择压力,使其产生逃避疫苗诱导免疫反应的突变。在感染广泛传播的情况下,这一点尤其令人担忧。通过开发和分析两个具有不同脆弱性和接触率的人口群体的数学模型,我们探讨了在人群中部署疫苗对繁殖率、病例、疾病丰度和疫苗逃逸压力的影响。该模型的结果说明了两个见解:(i) 旨在降低患病率的疫苗接种可能比直接为弱势群体接种疫苗更有效地减少疾病;(ii) 疫苗逃逸的最高风险可能发生在中等水平的疫苗接种中。这项工作证明了一个关键原则:针对特定人群精心接种疫苗可以尽可能减少疾病,同时限制疫苗逃逸的风险。
摘要:果实和蔬菜作物富含饮食中的饮食,维生素和矿物质,对人类健康至关重要。但是,许多生物压力源(例如害虫和疾病)和非生物压力源威胁着农作物的生长,质量和产量。改善作物特征的传统育种策略包括一系列的反杂交和选择,以将有益的特征引入细菌,这一过程缓慢且资源密集。新的繁殖技术称为群集定期间隔短的短质体重复序列(CRISPR) - 千里联相关的蛋白质-9(CAS9)有可能快速,准确地改善许多特征,例如产量,质量,疾病耐药性,抗病性胁迫,非生物胁迫耐受性和crops的营养方面。由于其简单的操作和高突变效率,该系统已应用于通过基因定向的突变获得新的种质资源。随着全基因组测序数据的可用性以及有关重要特征的基因功能的信息,CRISPR-CAS9编辑对精确突变的关键基因可以迅速产生新的种质资源,以改善重要的农艺性特征。在这篇评论中,我们探索了这项技术及其在水果和蔬菜作物中的应用。我们应对挑战,现有变体和相关的监管框架,并考虑未来的应用。
外显子和靶向测序的最新进展显着改善了癫痫病的病因诊断,揭示了持续数量的癫痫相关致病基因。因此,癫痫的诊断和治疗变得更容易获得,更可追溯。电压门控钾通道(KV)调节神经元系统中的电兴奋性。突变的KV通道已与癫痫有关,如在使用基因敲除小鼠模型的研究中所证明的那样。通过不同的机制,KV通道的增益和功能丧失导致具有相似表型的癫痫病,从而为癫痫的诊断和治疗带来了新的挑战。对遗传癫痫的研究正在迅速发展,几名候选药物靶向突变的基因或出现的通道。本文简要概述了与电压门控钾离子通道功能障碍相关的癫痫的症状和发病机理,并突出了治疗方法最近的进展。在这里,我们回顾了近年来与癫痫相关的基因突变的病例报告,并总结了KV基因的比例。我们的重点是针对与癫痫有关的特定电压门控通道基因的精确处理进展,包括KCNA1,KCNA2,KCNB1,KCNB1,KCNC1,KCND2,KCND2,KCNQ2,KCNQ2,KCNQ3,KCNQ3,KCNH1,KCNH1和KCNH5。
dnaprotein交叉链接(DPC)是非常常见的DNA病变,会干扰所有DNA交易,包括复制和转录。受损DNAPROTEIN交联修复(DPCR)的后果很严重。在细胞水平上,DPCR受损会导致双链断裂,基因组不稳定性和/或细胞死亡的形成,而在有机体水平上,DPCR缺乏与癌症,衰老和神经变性有关。诱导DPC用于医学治疗许多癌症,并了解有机体水平的修复可能会为开发新药和联合疗法与当前使用的化学治疗剂的开发提供动力。We use zebrafish (Danio rerio), an established vertebrate model to study cancer, neurodegenerative and cardiovascular diseases, and CRISPR/Cas gene editing to knockout or mutate genes of interest in order to study the interplay of DPCR factors and subpathways including proteolysis, and tyrosylDNA phosphodiesterasedependent repair at the biochemical and cellular level.i将介绍我们最近的发现,从CRISPRCAS系统产生的三种新的斑马鱼菌株:催化突变体和参与DPCR的ACRC蛋白酶的C端突变体,以及具有无活性DPCR因子的转基因菌株,无效的DPCR因子,酪液NA磷酸二酯酶1(TDP1)。我们发现ACRC是脊椎动物发育中的必不可少的蛋白酶,因为催化突变会导致早期的胚胎致死性。通过将ACRC(WT)mRNA构建体注射到突变胚胎中,我们能够种植转基因线并执行DPCR分析。我们发现ACRC是具有许多细胞底物的DPCR蛋白酶,SPRTT结构域对于修复至关重要,而本质上无序的区域是可分配的。我们还表明,TDP1是在有机体水平分辨出拓扑异构酶1和HistonedPC所必需的,并且我们进一步表征了一种新型的TDP1介导的修复途径,用于HistonedPC修复。
摘要:经典补体途径被抗原结合的IgG抗体激活。单体IgG必须寡聚以通过六聚体C1Q复合物激活补体,而IgG的六聚化突变体似乎是有希望的治疗候选者。然而,结构数据表明,没有必要结合所有六个C1Q臂以启动补体,从而揭示了C1和六聚体IgG复合物之间的对称不匹配,这尚未得到充分解释。在这里,我们使用DNA纳米技术来生成特定的纳米结构以模板抗原,从而控制IgG价值。这些DNA纳米含量的IgG复合物可以激活对细胞模拟脂质膜的补体,这使我们能够确定IgG价值对补体激活的影响,而无需突变抗体。我们使用生物物理测定法与3D冷冻电子断层扫描一起研究了这一点。我们的数据表明,C1复合物的补体C4裂解与抗原数量成正比。增加的IgG价值也转化为更好的终端途径激活和膜攻击复合物的形成。一起,这些数据提供了有关纳米图案抗原抗体复合物如何影响C1复合物激活的见解,并提出了通过抗体工程调节补体激活的途径。此外,据我们所知,这是DNA纳米技术首次用于研究补体系统的激活。
心肌病具有尚未解决的基因型-表型关系,并且缺乏针对疾病的治疗方法。我们在此提供了一个框架,以确定基因型特异性的发病机制和治疗靶点,以加速精准医疗的发展。我们使用人类心脏机电计算机建模和模拟,并通过实验性 hiPSC-CM 数据和建模结合临床生物标志物对其进行验证。我们选择肥厚性心肌病作为这种方法的挑战,并研究导致心脏肌节粗丝(MYH7 R403Q/+)和细丝(TNNT2 R92Q/+、TNNI3 R21C/+)蛋白质突变的基因变异。使用计算机模拟技术,我们表明,在 hiPSC-CM 中观察到的肌球蛋白超松弛不稳定会导致携带 MYH7 R403Q/+ 变体的虚拟细胞和心室患病,而细丝活化的次要影响对于导致细胞松弛减慢和心室舒张功能不全是必不可少的。计算机模拟建模表明,Mavacamten 可纠正 MYH7 R403Q/+ 表型,这与 hiPSC-CM 实验一致。我们的计算机模拟模型预测,细丝变体 TNNT2 R92Q/+ 和 TNNI3 R21C/+ 显示钙调节改变作为中枢病理机制,而 Mavacamten 无法完全挽救这种机制,我们在 TNNT2 R92Q/+ 和 TNNI3 R21C/+ hiPSC-CM 中证实了这一点。我们定义了一种新型细丝靶向化合物的理想特性,并通过计算机模拟展示了其功效。我们证明,基于人类的混合 hiPSC-CM 和计算机模拟研究加速了病理机制的发现和分类测试,改善了遗传变异的临床解释,并指导了合理的治疗针对和设计。
摘要 志贺氏菌是一种革兰氏阴性细菌,可侵入人体肠道上皮。由此引起的感染志贺氏菌病是最致命的细菌性腹泻病。有关决定志贺氏菌病理生理的基因(包括染色体和毒力质粒)的大部分信息都是通过经典反向遗传学获得的。然而,流行的诱变技术的技术限制使得单次反应中只能产生少量突变体,从而阻碍了大规模的志贺氏菌靶向诱变和随后的表型评估。我们采用了一种 CRISPR-Cas 依赖性方法,其中切口酶 Cas9 和胞苷脱氨酶融合在单向导 RNA(sgRNA)的引导下引入靶向 C ! T 转换,导致内部终止密码子和翻译过早终止。在使用 mCherry 荧光报告基因的原理验证实验中,我们能够在大肠杆菌和志贺氏菌中生成功能丧失突变体,效率高达 100%。使用改进的波动分析,我们确定在优化条件下,由 Cas9 脱氨酶融合引入的非靶向突变的频率与自发突变在同一范围内,这使我们的方法成为细菌诱变的安全选择。此外,我们对该方法进行了编程,以突变已充分表征的染色体和质粒携带的志贺氏菌基因,并发现突变体的表型与已报道的基因缺失突变体的表型相似,在表型水平上没有明显的极性效应。该方法可用于 96 孔板格式,以提高通量并在几天内生成一系列靶向功能丧失突变体。
心肌病具有尚未解决的基因型-表型关系,并且缺乏针对疾病的治疗方法。我们在此提供了一个框架,以确定基因型特异性的发病机制和治疗靶点,以加速精准医疗的发展。我们使用人类心脏机电计算机建模和模拟,并通过实验性 hiPSC-CM 数据和建模结合临床生物标志物对其进行验证。我们选择肥厚性心肌病作为这种方法的挑战,并研究导致心脏肌节粗丝(MYH7 R403Q/+)和细丝(TNNT2 R92Q/+、TNNI3 R21C/+)蛋白质突变的基因变异。使用计算机模拟技术,我们表明,在 hiPSC-CM 中观察到的肌球蛋白超松弛不稳定会导致携带 MYH7 R403Q/+ 变体的虚拟细胞和心室患病,而细丝活化的次要影响对于导致细胞松弛减慢和心室舒张功能不全是必不可少的。计算机模拟建模表明,Mavacamten 可纠正 MYH7 R403Q/+ 表型,这与 hiPSC-CM 实验一致。我们的计算机模拟模型预测,细丝变体 TNNT2 R92Q/+ 和 TNNI3 R21C/+ 显示钙调节改变作为中枢病理机制,而 Mavacamten 无法完全挽救这种机制,我们在 TNNT2 R92Q/+ 和 TNNI3 R21C/+ hiPSC-CM 中证实了这一点。我们定义了一种新型细丝靶向化合物的理想特性,并通过计算机模拟展示了其功效。我们证明,基于人类的混合 hiPSC-CM 和计算机模拟研究加速了病理机制的发现和分类测试,改善了遗传变异的临床解释,并指导了合理的治疗针对和设计。
蔬菜作物因其在平衡人类饮食中发挥的潜在作用而被称为保护性食物,尤其是对于素食者来说,因为它们是维生素和矿物质以及膳食纤维的丰富来源。许多生物和非生物胁迫威胁着这些作物的生长、产量和品质。这些作物的育种行为为一年生、二年生和多年生。传统的育种策略在改良经济作物性状方面面临许多挑战。在大多数情况下,将有用性状渗入种质需要大量的回交和严格的选择压力,这是一个耗时耗力的过程。植物科学家通过使用被称为成簇的规律间隔的短回文重复序列 (CRISPR)-CRISPR 相关蛋白-9 (Cas9) 的革命性育种方法,更精确、更准确地改良了作物的产量、品质、生物胁迫抗性、非生物胁迫耐受性等经济性状并提高了营养品质。该技术具有突变效率高、脱靶后果少和操作简单等特点,因此可以通过基因定向突变获得新的种质资源。即使在使用传统方法难以培育的复杂基因组中,它也有助于诱变反应。随着全基因组测序的发展,重要基因功能的揭示促进了 CRISPR-Cas9 编辑对所需靶基因进行突变。该技术加快了具有更好农业经济性状的新种质资源的创造。本综述详细描述了 CRISPR-Cas9 基因编辑技术及其在蔬菜栽培中的潜在应用、面临的挑战和未来前景。