心肌病具有尚未解决的基因型-表型关系,并且缺乏针对疾病的治疗方法。我们在此提供了一个框架,以确定基因型特异性的发病机制和治疗靶点,以加速精准医疗的发展。我们使用人类心脏机电计算机建模和模拟,并通过实验性 hiPSC-CM 数据和建模结合临床生物标志物对其进行验证。我们选择肥厚性心肌病作为这种方法的挑战,并研究导致心脏肌节粗丝(MYH7 R403Q/+)和细丝(TNNT2 R92Q/+、TNNI3 R21C/+)蛋白质突变的基因变异。使用计算机模拟技术,我们表明,在 hiPSC-CM 中观察到的肌球蛋白超松弛不稳定会导致携带 MYH7 R403Q/+ 变体的虚拟细胞和心室患病,而细丝活化的次要影响对于导致细胞松弛减慢和心室舒张功能不全是必不可少的。计算机模拟建模表明,Mavacamten 可纠正 MYH7 R403Q/+ 表型,这与 hiPSC-CM 实验一致。我们的计算机模拟模型预测,细丝变体 TNNT2 R92Q/+ 和 TNNI3 R21C/+ 显示钙调节改变作为中枢病理机制,而 Mavacamten 无法完全挽救这种机制,我们在 TNNT2 R92Q/+ 和 TNNI3 R21C/+ hiPSC-CM 中证实了这一点。我们定义了一种新型细丝靶向化合物的理想特性,并通过计算机模拟展示了其功效。我们证明,基于人类的混合 hiPSC-CM 和计算机模拟研究加速了病理机制的发现和分类测试,改善了遗传变异的临床解释,并指导了合理的治疗针对和设计。
主要关键词