1. 简介 在汽车行业,电气解决方案的高度集成是一大趋势 [1]。因此,行业面临着提供集成度更高、更可靠、更节能的设备的需求 [1-4]。这些设备应安装在汽车有限的空间内。这种内部空间限制以及不断增加的功率密度需要增强散热以在减小尺寸的同时提高性能 [2]。PCB 嵌入式技术是解决这些问题的绝佳解决方案。事实上,它通过优化互连、减小尺寸和重量以实现小型化来提高电源模块性能 [1, 5]。这种优化可降低寄生电感并获得更好的热管理 [1, 6, 7]。本文选择的一个应用示例是智能皮带驱动起动发电机。对于此应用,我们采用了 PCB 嵌入式技术。对于后一种情况,本研究涉及一种新电源模块概念的可行性,该概念包含四个 100 V Si MOSFET ST315N10F7D8,作为单个开关并联,高度集成在 48 V/400 A 电机中,一方面减小体积和重量,另一方面提高热管理和芯片粘接的机械强度。该技术基于将 Si MOSFET 集成到 PCB 内部,使用银浆烧结进行芯片粘接和预浸渍复合纤维层压。本文将重点描述更为坚固的组装工艺,随后对原型进行电气测试以展示其功能,而机械测试将展示其强度。2. PCB 嵌入式组装设计其原理是使用基于厚铜板的绝缘金属基板 (IMS) 来传输大电流并优化散热。芯片堆叠在两块铜板之间以便于嵌入。芯片和铜板之间的连接由银烧结工艺确保。电绝缘由层压在这些铜板之间的预浸渍复合纤维层实现(见图 1)。此外,芯片栅极烧结到铜箔上,并且可以通过镀通孔 (PTH) 访问该铜箔。
摘要:印刷电路板 (PCB) 是重要的模块,被广泛地应用于工业设备和机械,用于控制或信号处理。处于动态环境中的 PCB 可能容易因谐波或随机振动源产生的过多周期性应力而发生故障。因此,对 PCB 及其相关组件的动态行为进行数值建模和预测的能力对于关注 PCB 可靠性的分析师来说是一种有价值的工具。本文使用实验振动分析和有限元法 (FEM) 研究 PCB 谐振行为随电子元件的质量、位置和刚度变化而发生的变化。考虑了稀疏或密集地布满电阻器、晶体管、电容器和集成电路等无处不在的焊接电子元件的电路板。分析表明,对于元件数量较少的电路板,其固有频率与裸 PCB 相比会降低,而焊接元件数量较多的电路板则相应增加。研究表明,焊料的总体效果是降低 PCB 的固有频率,并在较小程度上降低阻尼比。该研究确定了通过适当选择和定位连接元件来调整 PCB 振动响应的潜力。
a b s t r a c t,以预浓缩一些持续的有机污染物(POP),例如有机氯农药(OCP),多环芳香芳烃,多氯苯基碳氢化合物(PAHS)和多氯二氯的分析(PCB),然后通过胃char(PCB)(PCB)(PCB)(PCB)分析(PCB)。 (GC – MS)。所研究的变量是提取溶剂类型和音量以及提取步骤的复制。HLLE方法的最佳实验条件为15 ml二氯甲烷,两种重复为第一个提取溶剂,而10 mL N-己烷则具有两个重复作为第二个提取溶剂。在最佳条件下,计算出的校准曲线给出了所有目标分析物的高级线性,平均相关系数高于0.996的平均相关系数,为0.998,ʃPAH为0.998,ʃPCB的平均相关系数为0.998,为0.999。ʃOOCPS的平均量为4.3%,ʃPCB的平均值为5.01%,PAHS的平均相对偏差为5.01%,而检测限为0.09–58.67 ng l -1,PAHS为0.1-45.6 ng l -1,对于OCPS和0.03 ng l -1,对于OCPS和0.03-14.14.14.14.14.14.14.5 ng l -14.51。此外,使用相对恢复的方法的准确性分别高于95.6%,87.8%和105.7%的ʃOOCPS,ʃPAH和ʃPCB。恢复的结果表明该方法的准确性是合适的,并且在理论预浓缩因子中表示低不确定性(PF = 1000)。
3. 课程“PCB 设计、组装和包装”(EQF 3 至 6)课程“PCB 设计、组装和包装”涵盖生产一块印刷电路板 (PCB) 所需的整个过程和步骤。该课程以项目为基础,即每个学生必须根据 EQF 级别设计、生产和测量一块不同难度的 PCB。不同 EQF 级别的内容包括相应 EQF 级别的不同模块。它们如下图所示。这些模块包括:原理图设计、组件选择、印刷电路板设计、模拟、在适当情况下对生产的 PCB 进行最终封装以及对最终产品进行测试。课程中教授三种不同的软件产品:Kicad、Altium 和 Proteus。课程包括 PCB 的主要组装和安装技术。课程介绍了通孔焊盘和 SMD 焊盘之间的主要区别及其优缺点。课程中,将研究单层和多层 PCB 设计的不同制造工艺步骤,其中通孔用于层间连接和最佳热传递。
硕士技术项目:“CNC PCB 钻孔机” 持续时间:10 个月 团队规模:2 名成员 角色:软件开发、机械和产品设计。描述:使用 PCB 制造软件,使用钻孔文件进行坐标定位,使用高效的钻孔机对 PCB 进行精确钻孔,并尽可能降低单位成本。
本文的目的是证明有关预测电化学迁移(ECM)引起的故障的案例研究,该迁移发生在印刷电路板上(PCB)。首先,提供了本研究中使用的栅极驱动程序PCB的简要介绍。在冷凝条件下,研究了在受弱有机酸(WOA)污染的PCB板上发生的电化学反应。基于Comsol,提出了一种方法来模拟电化学反应。要校准模拟中使用的参数,测量了表面绝缘电阻(SIR)上的泄漏电流(LC)。因此,执行了一个参数优化过程,以确保模拟LC匹配测量数据。为了验证所提出的方法,在门驱动器PCB上执行湿度测试。在测试中观察到的失败与模拟LC密度进行了比较,该密度被用作形成ECM的指标。最后,当PCB在实际操作条件下运行时,进行仿真。模拟确定可能发生在PCB上的可能发生的ECM路径。
8 School of Management 1 Annamacharya Institute of Technology and Sciences, 2 Coolsoft LLC, 3 Sree Saraswathi Thyagarajan College, 4,5 Shri Nehru Maha Vidyalaya College of Arts and Science, 6 Kaamadhenu Arts and Science College, 7 Sree Narayana Guru College, 8 BBD University Abstract: This paper explores an advanced solution for enhancing quality control in Printed电路板(PCB)制造是通过集成Yolo(您只看一次)对象检测算法的制造。该系统具有传送带,直流电动机和高分辨率摄像头,用于实时识别和移动PCB上缺陷的定位。Yolo算法过程捕获了图像,有效地识别了各种缺陷,例如焊接问题和组件未对准。通过传送带和直流电动机之间的无缝集成来实现对检查过程的精确控制,从而提高了缺陷检测的速度和准确性。识别缺陷后,该系统包括一种机制,可以将有缺陷的PCB与生产线分开。有缺陷的PCB通过传送带将其改编为指定区域,以确保在制造过程中仅进行高质量的PCB。这种自动化方法可降低人类干预,可显着提高生产效率,降低制造成本并提高整体PCB质量。所提出的系统展示了尖端图像处理技术与强大的机械组件之间的协同作用,为PCB制造关键字中的缺陷检测和隔离提供了全面的解决方案:PCB,DC发动机,PCBIONS,PCBIONS,机器学习,机器学习,工业,缺陷。
摘要。本文研究了数字图像相关 (DIC) 和有限元分析在印刷电路板 (PCB) 应变测量中的应用。电路板 (PCB) 旨在机械支撑和电连接电子元件组件。由于螺钉组件、放置 PCB 的表面水平差异、组装电子元件的过程会在 PCB 中引起一定的应力和变形状态。受影响的主要组件是微处理器,因为它们是用 BGA - 球栅阵列 (BGA) 粘合到 PCB 上的。数字图像相关 (DIC) 是一种全场非接触式光学方法,用于测量实验测试中的位移和应变,基于测试期间拍摄的图像的相关性。实验装置采用 Dantec Q-400 系统(用于图像捕获)和 Istra 4D 软件(用于图像相关和数据分析)实现。将获得的应变的最大水平与允许极限进行比较。有限元分析 (FEA) 是一种数值分析方法,用于分析任何给定几何结构中的应力和应变。关键词:数字图像相关;有限元分析;PCB;应变。
超过 50 年的经验 PCB 在全球范围内设计、制造和销售传感器。我们在全球拥有 1000 多名员工,其中有数名博士。这些技术精湛的资源使 PCB 能够提供各种产品,从麦克风到加速度计、力、扭矩、压力、负载、MEMS 传感器、剂量计和声级计。在 PCB,我们了解您的测试环境和要求的复杂性,因此我们可以为您的应用推荐最佳解决方案。