法国里昂 摘要 碳化硅功率 MOSFET 在许多研究中用于提高电力电子转换器的效率或性能。然而,栅极氧化物技术弱点是碳化硅 MOSFET 晶体管的主要可靠性问题。阈值电压漂移是解决工业电源应用可靠性的关键现象。更好地理解栅极阈值电压漂移中隐含的现象非常重要。在此背景下,本文提出了一种基于 JEDEC 标准的静态老化测试,并研究和讨论了由此产生的栅极氧化物应力。进行了补充测试,包括动态可靠性和栅极氧化物特性,例如电荷泵技术。获得的结果用于为当前有关 SiC MOSFET 稳健性的讨论增添见解。此外,还详细介绍了测试台和测量协议。 * 通讯作者 quentin.molin@supergrid-institute.com 电话:+33 6 68 30 16 52 1. 简介 由于 SiC 具有比硅更优越的电气性能,因此它是一种很有前途的高压高温器件材料。然而,仍有许多可靠性问题有待解决,例如氧化物退化 [1]、阈值电压不稳定性 [2]、[3] 和短路行为 [4]、[5] 和 [6]。其中一些关键点对于开发用于工业应用的可靠功率器件至关重要 [7]。
b IRT Saint-Exupéry,图卢兹,法国 摘要 本文提出了 SiC MOSFET 栅极在重复短路应力下的老化规律。基于分析研究、物理形式和预处理数据,提出了基于应力变量 T j、T 脉冲栅极损伤 % 和 E sc 的数值拟合。对老化规律的准确性和预测能力进行了评估和比较。结果提出了一种基于 T Al_Top 金属源的新老化规律。该规律的拟合精度最高。最后,直接基于短路能量 E sc 的老化规律似乎具有最佳的预测能力。 1. 简介 SiC MOSFET 提高了功率转换器效率 [1]。如今,必须保证意外极端操作中的可靠性和稳健性。然而,由于平面结构中的电流密度更高和通道更短,SiC MOSFET 的短路 (SC) 耐受时间 (T SCWT @2/3 x V DSmax ) 低于硅器件,t SCWT = 2μs,而 Si IGBT 的 t SCWT = 10μs。最近,人们投入了大量精力来研究短路测试下的专用 SiC MOSFET 故障机制 [2,3]。高温变化导致栅极区域和 Al 源金属周围产生累积热机械应力。这些通常导致 SiC MOSFET 无法超过源自硅标准的 1000 次重复短路循环阈值。在 SiC MOSFET 栅极损坏之前,对其允许的短路循环次数的预测目前尚不为人所知,但这却是运行阶段主要关注的问题。在 [4] 中,提出了威布尔分布和直接 T j Coffin-Manson 老化定律,但漏源电压偏置降低至 200V,并使用栅极沟槽器件。在 [5] 中,作者通过实验证实了栅极老化与 T j 应力的依赖关系,但未拟合 Coffin-Manson 参数,因此未提出预测能力。在本文中,进行了重复的 SC 研究,以建模并提出一组 SiC MOSFET 上的预测分析栅极老化定律
摘要 — 在高剂量脉冲带电粒子束中,所有在线探测器都会因离子复合而饱和。因此,不可能单独计数探测器脉冲。碳化硅由于其高带隙、高热导率和高位移能量而被视为替代品。实时分析波形在带宽、可测量能量范围、传感器尺寸、数据速率方面具有挑战性。在此背景下,设计了一个用于辐射信号处理的模拟前端 (AFE)。它基于跨阻放大器 (TIA) 和电荷敏感放大器 (CSA) 来分析生成信号的形状。描述了用于表征高探测器电容 AFE 的方法。还介绍了从辐射环境中的模拟、实验和测量中提取的结果。
研究了 Ti 3 SiC 2 基欧姆接触在 p 型 4H-SiC (0001) 4° 偏心衬底上的高温稳定性和可靠性。该接触由高温(900°C 至 1200°C)退火的 Ti 100-x Al x 合金生长而成。室温和高温(高达 600°C)下的特定接触电阻 (SCR) 在 10 -4 -10 -5 Ω.cm 2 范围内。计算出该组样品的肖特基势垒高度为 0.71 至 0.85 eV。在 600°C 下老化 1500 小时后,当 Al 含量 x < 80 at% 时,SCR 非常稳定。这与这些接触的化学和物理稳定性有关,其中老化后 4H-SiC/Ti 3 SiC 2 界面上的残余应力减小,因此 Ti 3 SiC 2 相得以保留。然而,在 x = 80 at% 的情况下,Ti 3 SiC 2 相消失,长时间老化后接触不再具有欧姆性。所得结果表明,Ti 3 SiC 2 /4H- SiC 系统在高温下具有热力学稳定性,因此可以成为高功率和高温电子应用的良好候选材料,具有很高的潜力。
摘要。块体碳化硅 (SiC) 的优越物理特性以及一维 (1D) 纳米结构特定物理特性的预期增强,激发了一系列针对纳米线 (NW) 制造和特性以及其在器件中的应用的研究。SiC 纳米线场效应晶体管 (NWFET) 是研究 SiC NW 在外部刺激(如电场)(集成电路中的应用)或 NW 表面上存在力或化学/生物物种(传感器中的应用)时在不同温度下的电特性的理想器件概念。SiC NW 量子传输建模的初步报告揭示了实现与 Si 基 NWFET 相当性能的前景。然而,实验性的 NWFET 演示表现出较低的载流子迁移率、I ON /I OFF 比和跨导 (gm ) 值,这对其进一步发展构成了障碍。低性能主要源于高度无意掺杂和未优化的 SiO 2 /SiC NW 界面。事实上,由于缺乏对 SiC NW 自下而上的生长过程的严格控制,导致非常高的载流子浓度(主要源于无意掺杂)接近退化极限。高密度陷阱和固定电荷的低界面质量导致栅极电场屏蔽,并表明需要进一步研究 SiO 2 /SiC NW 界面。由于这两种影响,即使在非常高的栅极电压下也无法实现器件关断。目前,只有在源/漏极 (S/D) 区域具有肖特基势垒 (SB) 的背栅极 NWFET 才表现出明确的关断和改进的性能,这要归功于通过全局栅极作用间接调制漏极电流,从而调节 S/D 区域的 SB 透明度。
区域(2.5-25 毫米)。这将有助于实现适当的光谱选择性(a/e),这是评价 SSA 组成材料的参数。4 第二个要求是它的工作温度。事实上,目前 SSA 的最大工作温度限制在 600 1 C,因为超过此温度其组件就会退化。5 这严重限制了 CSP 对太阳辐射光热转换的充分利用。更高的工作温度(通常为 900 1 C )将提高发电系统的热电转换效率,而该效率受卡诺效率的限制;Zc=1Tc/Th,其中 Th 是工作温度,Tc 是环境温度6,6 从而提高了 SSA 的效率。碳化硅 (SiC) 为高温应用提供了独特的特性,可与其他 CSP 系统的工作条件兼容。 7 它重量轻,导热系数高,抗热震性能优良,强度高,氧化时能形成钝化氧化层,具有抗氧化性能,热稳定性可达B 1400 1 C。7-9
摘要 — 在晶圆级上对电力电子器件芯片结构进行精确而准确的电气特性分析对于将器件操作与设计进行比较以及对可靠性问题进行建模至关重要。本文介绍了一种分立封装商用碳化硅 MOSFET 的二维局部电气特性参数分析。在横截面样品上,使用扫描电子显微镜 (SEM) 中的电子束感应电流 (EBIC) 来定位体二极管的 pn 结,评估电子束能量对该区域成像的影响。采用基于原子力显微镜 (AFM) 的扫描电容显微镜 (SCM) 分析封装碳化硅 MOSFET 器件的结区。提出了一种参数方法来揭示 MOSFET 中所有层的局部电气特性(n 型、p 型、掺杂 SiC 外延层的低、中、高掺杂水平以及 SiC 衬底和硅栅极)。本文的目的是揭示 EBIC 和 SCM 对 SiC 封装器件进行全面特性分析的潜力。研究了 SCM 采集期间施加的电压(V DC 和 V AC )的影响,以量化它们对 MOSFET SiC 掺杂层分析的影响。尖端/样品纳米 MOS 接触的 TCAD 模拟支持纳米电气实验,以确认碳化硅芯片 AFM 图的掺杂水平解释。
摘要 — 本文介绍了商用碳化硅 (SiC) MOSFET 器件在高漏源电压下重复性短路应力下的短路 (SC) 性能。研究了两种方案来评估栅源电压 (V GS ) 去极化和短路持续时间 (T SC ) 减少的影响。V GS 去极化可降低功率密度,并允许在增加短路持续时间 T SCmax 的情况下保持安全故障模式 (FTO:开路故障)。结果表明,SiC MOSFET V GS 去极化不会降低 T SCmax 下的短路循环能力。但是,使用 V GS 去极化可以使性能接近 IGBT 稳健性水平,在 T SC =10 µ s 下循环近 1000 次。短路测试期间芯片温度变化的模拟表明,性能下降仍然归因于短路循环期间结温 (TJ ) 的升高,这导致顶部 Al 融合,从而导致厚氧化物中出现裂纹。
€ ‚▪ ▪ ▪ ‚ ‚ € … † ‡ˆ ‚ ▪ ▪ ▪ € ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ‚ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ 予爱
为了准备将量子启发式交通控制系统投入实际道路使用,DLR ITS 实验室也在对其进行测试。DLR ITS 实验室提供所有交通技术和技术设备,这些技术和设备也适用于典型的道路交叉口。这些设备尤其包括交通信号控制单元。因此,可以验证和优化量子启发式控制系统与实际交通技术之间的相互作用,以便在测试现场推广。