摘要本综述的目的是通过审查分子信号传导途径来描述耐力和力量体育训练对心血管系统的影响,该途径在不同的肌肉适应中起着关键作用,以及代谢和心脏重塑和血液动力学方面的心脏变化。响应于耐力 - 运动,包括Ca 2+依赖性途径,活性氧(ROS),AMP依赖性蛋白激酶(AMPK)和有丝分裂原活化蛋白激活的蛋白激酶(p38 MAPK)的多种信号通路参与了多氧化物组生物剂 - 生效α-coctator-intacivator-1 cocactator-cocactator-cocactator-inty coactator-rycactator-1控制线粒体生物发生。强度训练增加了胰岛素样生长因子(IGF-1),该因子启动了磷脂酰肌醇3-激酶(PI3-K) - (AKT) - (MTOR)信号级联,导致蛋白质和肌肉肥大的合成。除了有据可查的骨骼肌变化外,对运动训练的反应的关键组成部分是动态心脏重塑,根据触发因素而被归类为病理或生理。关键字:运动心脏病学,运动生理学,运动医学
摘要:肺动脉高压(PAH)是一种进行性致命疾病,无法治愈。PAH的确切致病机制是复杂且知之甚少的,但是许多异常表达的基因和调节途径有助于持续的血管收缩和远端肺动脉的血管重塑。雷帕霉素(MTOR)的哺乳动物靶标是与调节细胞增殖,迁移,分化和蛋白质合成有关的主要信号通路之一。 在这里,我们将描述MTOR复合物1和2之间的典型MTOR途径,结构和功能差异,以及与PAH开发的其他重要信号级联的串扰。 将讨论MTOR在肺动脉平滑肌和内皮细胞中对增殖,迁移,表型过渡和基因调节的贡献,在肺血管重塑和持续血管收缩中的致病作用。 尽管我们阐明了PAH的病因学和发病机理在过去的两个几十年中,但缺乏有效的治疗剂来治疗代表重要的未满足临床需求的PAH患者。 在这篇综述中,我们将探讨使用MTOR信号级联抑制剂治疗PAH的可能性和治疗潜力。哺乳动物靶标是与调节细胞增殖,迁移,分化和蛋白质合成有关的主要信号通路之一。在这里,我们将描述MTOR复合物1和2之间的典型MTOR途径,结构和功能差异,以及与PAH开发的其他重要信号级联的串扰。将讨论MTOR在肺动脉平滑肌和内皮细胞中对增殖,迁移,表型过渡和基因调节的贡献,在肺血管重塑和持续血管收缩中的致病作用。尽管我们阐明了PAH的病因学和发病机理在过去的两个几十年中,但缺乏有效的治疗剂来治疗代表重要的未满足临床需求的PAH患者。在这篇综述中,我们将探讨使用MTOR信号级联抑制剂治疗PAH的可能性和治疗潜力。
保留所有权利:这项工作是版权的主题,而边缘科学出版商则拥有1。工作(以及其中的版权)或已许可分发工作。您不得复制,复制,修改,删除,删除,增强,添加,发布,发行,出售,出售,转售,创建,创建衍生作品,或以任何方式利用工作或使其他人可用的作品以任何形式或以任何形式或以任何方式以任何形式或任何情况下,在每种情况下,在每种情况下,无论是在任何情况下均不以前的书面允许,否则都没有签订书面允许,否则否则否则否则就否认了这一协议。您可以一次将作品的副本下载到一台个人计算机上(包括平板电脑,2。笔记本电脑,台式机或其他此类设备)。您可以制作一份作品的备份副本,以避免丢失它。未经授权的使用或分配版权或其他专有内容是非法的,可能会受到3。您将对因滥用工作或违反本许可协议的任何损害而责任,包括您对版权或专有权利的任何侵权。
Sunil Acharya 1, Rafet Basar 1, May Daher 1, Hind Rafei 1, Ping Li 1, Nadima Uprety 1, Emily Ensley 1, Mayra 6 Shanley 1, Bijender Kumar 1, Pinaki P. BANERJEE PINAKI P. BANERJEE 1, Lucian Melo GARCIA 1, Lucian Mello Garcia 1 Lin 1, Vakul Mohanty 2, Kun 7 Hee Kim 2, Xianli Jiang 2, Yuchen Pan 2, Ye Li 1, Bin Liu 1, Ana Karen Nunez Cortes 1, Chenyu Zhang 1, 8 Mohsen Fathi 3,4, Ali Rezvan 3, Melisa J. Montalvo 3, Montalvo 3, SopHia L Cha 1, Francia Reyes-Silva 1, Rejeena 9 Shrestha 1, Xingliang Guo 1, Kiran Kundu 1, Alexander Biederstadt 1,5, Luis Muniz-Feliciano 1, Gary M. 10 Deyter 1, MECIT KAPLAN 1, MECIT KAPLAN 1, MECIT KAPLAN 1, MECIT KAPLIN 1, MECIT KAPLIN 1, MECIT KAPLINE Liu 1, Antrix Jain 6, Janos Roszik 7,Natalie W. Fowlkes 8,Luisa 11 M. Solis Soto 9,Maria Gabriala Raso 9,Joseph D. Khoury 10,Pei Lin 11,Pei Lin 11,Pei Lin 11,Francisco Vega 11,Navin 12 Vadan Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Cheen Cheen Cheen Cheen Cheen Marin 1,Elizaber 1 * Div>Sunil Acharya 1, Rafet Basar 1, May Daher 1, Hind Rafei 1, Ping Li 1, Nadima Uprety 1, Emily Ensley 1, Mayra 6 Shanley 1, Bijender Kumar 1, Pinaki P. BANERJEE PINAKI P. BANERJEE 1, Lucian Melo GARCIA 1, Lucian Mello Garcia 1 Lin 1, Vakul Mohanty 2, Kun 7 Hee Kim 2, Xianli Jiang 2, Yuchen Pan 2, Ye Li 1, Bin Liu 1, Ana Karen Nunez Cortes 1, Chenyu Zhang 1, 8 Mohsen Fathi 3,4, Ali Rezvan 3, Melisa J. Montalvo 3, Montalvo 3, SopHia L Cha 1, Francia Reyes-Silva 1, Rejeena 9 Shrestha 1, Xingliang Guo 1, Kiran Kundu 1, Alexander Biederstadt 1,5, Luis Muniz-Feliciano 1, Gary M. 10 Deyter 1, MECIT KAPLAN 1, MECIT KAPLAN 1, MECIT KAPLAN 1, MECIT KAPLIN 1, MECIT KAPLIN 1, MECIT KAPLINE Liu 1, Antrix Jain 6, Janos Roszik 7,Natalie W. Fowlkes 8,Luisa 11 M. Solis Soto 9,Maria Gabriala Raso 9,Joseph D. Khoury 10,Pei Lin 11,Pei Lin 11,Pei Lin 11,Francisco Vega 11,Navin 12 Vadan Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Chen Cheen Cheen Cheen Cheen Cheen Marin 1,Elizaber 1 * Div>
要全面了解细胞信号传导过程,需要了解蛋白质结构/功能关系、蛋白质-蛋白质相互作用以及控制表型的途径的能力。计算模型提供了一个有价值的框架,用于整合这些知识以预测系统扰动和干预对健康和疾病的影响。虽然机械模型非常适合理解信号转导的生物物理基础和治疗设计原理,但数据驱动模型特别适合提炼样本之间以及多变量信号变化和表型之间的复杂信号关系。这两种方法都有局限性,并且无法提供信号生物学的不完整表示,但它们的精心实施和整合可以为操纵系统变量如何影响细胞决策提供新的理解。
重要提示:本 NFPA 文件可供使用,但须遵守重要通知和法律免责声明。这些通知和免责声明出现在包含本文件的所有出版物中,可在“有关 NFPA 文件的重要通知和免责声明”标题下找到。它们也可以从 NFPA 索取或在 www.nfpa.org/disclaimers 上查看。注意:在指定段落的数字或字母后面的星号 (*) 表示可以在附录 A 中找到有关该段落的解释材料。除了编辑之外的更改,在发生更改的段落、表格或图形旁边用垂直规则表示。包含这些规则是为了帮助用户识别与上一版的更改。如果删除了一个或多个完整段落,则在保留的段落之间用项目符号 (•) 表示删除。章节或段落后面的括号 [ ] 中的引用表示已从另一个 NFPA 文件中提取的材料。为了帮助用户,第 2 章给出了文档强制章节摘录的源文件的完整标题和版本,附录 H 给出了信息章节摘录的源文件的完整标题和版本。摘录的文本可能会进行编辑以保持一致性和风格,并且可能包括内部段落引用和其他参考的修订(视情况而定)。对摘录文本的解释或修订请求应发送给负责源文件的技术委员会。段落后面的括号 ( ) 中的引用表示该章节或段落的委员会责任。委员会缩写与文件前面的委员会名单中显示的缩写一致。有关参考出版物的信息可在第 2 章和附件 H 中找到。
胱天蛋白酶家族的蛋白酶以及 Toll/白细胞介素-1 受体 (TIR) 结构域蛋白在人类的先天免疫和调节细胞死亡中发挥着核心作用。在本研究中,我们描述了一种由胱天蛋白酶样蛋白酶和 TIR 结构域蛋白组成的细菌免疫系统。我们发现,一旦 TIR 蛋白识别出噬菌体入侵,它就会产生以前未知的免疫信号分子 ADP-环[N7:1′′]-核糖 (N7-cADPR)。这种分子特异性地激活细菌胱天蛋白酶样蛋白酶,然后无差别地降解细胞蛋白以阻止噬菌体复制。TIR-胱天蛋白酶防御系统(我们称之为 IV 型 Thoeris)在细菌中含量丰富,可有效防止噬菌体繁殖。我们的研究突出了 TIR 产生的免疫信号分子的多样性,并表明由胱天蛋白酶家族蛋白酶调节的细胞死亡是一种古老的先天免疫机制。
模式识别受体 (PRR),例如 Toll 样受体 (TLR) 和核苷酸寡聚化结构域样受体 (NLR),在宿主对微生物感染的先天抵抗力中至关重要。这些受体识别病原体相关分子模式 (PAMP) 和危险相关分子模式 (DAMP),并将这些信号转化为生物反应。TLR 通过募集信号转导接头髓系分化初级反应蛋白 88 (MyD88) 和/或含有 TIR 结构域的接头蛋白诱导 IFN- β (TRIF) 及其各自的辅助接头 MyD88 接头样 (Mal) 和 TRIF 相关接头分子 (TRAM) ( 1 – 8 ) 来实现这一点。大多数 TLR 使用 MyD88 作为信号转导接头,但 TLR3 除外,它仅通过 TRIF 发出信号,而 TLR4 同时使用 TRIF 和 MyD88 ( 2 )。除 PRR 外,许多早期炎症反应还受白细胞介素 (IL)-1 细胞因子家族调节,包括 IL-1a、IL-1b、IL-18 和 IL-33 (9)。对这些细胞因子的反应由 IL-1 受体 (IL-1R) 以及密切相关的 IL-18R 和 IL-33R 介导,所有这些细胞因子都使用 MyD88 作为信号转导接头,类似于 TLR (9-11)。IL-1R 或大多数 TLR 的参与会导致 MyD88、IL-1 受体相关激酶 (IRAK) 4 和 IRAK2 或 IRAK1 的层级募集,随后是 E3 泛素连接酶 TNF 受体相关因子 6 (TRAF6) (10-18),形成
摘要 受活细胞信号网络启发的可编程化学电路是开发自适应和自主自组装分子系统和材料功能的一种有前途的方法。分子水平上已经取得了进展,但将分子控制电路连接到自组装较大元素(如胶体)以进行实空间研究和获取功能材料的方法很少,而且可能会受到动力学陷阱、絮凝或困难的系统集成协议的影响。我们在此报告了一种立足点介导的 DNA 链置换反应网络,该网络能够自主地将两种不同的微凝胶引导到瞬态和自调节的共组装中。微凝胶被 DNA 功能化并成为网络的基本组成部分。电路设计的灵活性允许通过在核心电路的上游或下游链接额外的电路模块来安装延迟阶段或加速器。该设计提供了一种适应性强且强大的方法来调节其他构建块以实现高级仿生功能。
发现蛋白激酶在癌症形成和进展中发挥关键作用的发现引发了人们的极大兴趣,并激发了人们对开发有针对性治疗的信号通路的强烈研究,并鉴定了预后和预测性生物标志物。尽管大多数努力都集中在酪氨酸激酶抑制剂(TKIS)和酪氨酸激酶受体(RTK)的靶向抗体,但也针对丝氨酸/苏氨酸激酶和蛋白质磷酸酶。不幸的是,抑制剂通常缺乏特定的牙齿,并影响各种激酶。此外,经过治疗的肿瘤获得耐药性和复发性,需要二线治疗。随着精确医学的出现,很明显,网络比单个蛋白质和基因更强大。药物开发正在转向动态信号网络靶向。在后基因组时代,翻译后的修饰,例如蛋白质磷酸化及其如何影响活动或网络结构的理解仍然很差。本期专门针对癌症中蛋白质磷酸化途径的揭示的特刊,其中包括来自全球七个以上国家的80多名科学家的七篇评论文章和六篇原始研究论文。两个审查手稿提供了丝氨酸/苏氨酸蛋白激酶PKD和PKCθ的概述。Zhang等。 [1]讨论在二酰基甘油第二信号信号网络中运行的蛋白激酶D 1、2和3(PKD)家族成员,影响了不同生物系统和疾病模型中多种基本细胞功能。 Nicolle等。Zhang等。[1]讨论在二酰基甘油第二信号信号网络中运行的蛋白激酶D 1、2和3(PKD)家族成员,影响了不同生物系统和疾病模型中多种基本细胞功能。Nicolle等。在许多人类疾病中发现了PKD同工型表达和活性的失调。本综述着重于与癌症相关的生物学过程(细胞增殖,生存,凋亡,粘附,EMT,迁移和入侵),对此,理解对于开发更安全,更有效的PKD靶向疗法至关重要。蛋白激酶C theta(PKCθ)属于一种新型的PKC亚家族,在免疫系统和各种疾病的病理中起作用。[2]将其审查集中在其在癌症中的新兴功能上。其表达增加会导致细胞增殖,迁移和侵袭,从而导致癌症的启动和恶性进展。在自身免疫性疾病的背景下,PKCθ抑制剂的最新发展可能会使PKCθ与PKCθ有关的癌症的出现有益。pKC被质膜中的脂质激活,并与聚集在表皮生长因子受体(EGFR)上的支架结合。Heckman等人在论文中使用不同的表位识别抗体。[3]证明了PKCε是在两个构象中发现的,其中活性形式定位在内体中,将囊泡运送到内吞回收室中,而灭活则抵消了此功能。另一种形式是可溶的,存在于富含肌动蛋白的结构上,并与囊泡松散结合。因此,活化的PKC持续使用EGFR,更有可能进入内吞回收室。pumilus(Binase)的细菌RNase对具有某些癌基因的肿瘤细胞具有细胞毒性作用。核糖核酸(RNase)的动物,真菌和细菌起源已被证明是开发新型抗癌药物的有前途的工具。在实验贡献中,Ulyanova等人。[4]旨在识别结构