Ser/Thr 激酶 RAF,特别是 BRAF 亚型是致癌突变的主要靶点,在各种癌症中都发现了许多突变。然而,除 V600E 之外的这些突变如何逃避 RAF 蛋白的调节机制并因此引发其致癌性仍不清楚。方法:在本研究中,我们使用诱变、肽亲和力测定、免疫沉淀、免疫印迹和互补分裂荧光素酶测定以及小鼠异种移植肿瘤模型来研究 RAF 的功能如何由 Cdc37/Hsp90 分子伴侣和 14-3-3 支架协同调节,以及这种调节机制如何被普遍的非 V600 突变逃避。结果:我们发现 Cdc37/Hsp90 分子伴侣与成熟的 BRAF 蛋白结合,与 14-3-3 支架一起促进 BRAF 蛋白从活性开放二聚体转变为非活性封闭单体。大多数非 V600 突变富集在 BRAF 的 Cdc37/Hsp90 结合片段上或周围,这会削弱 CDc37/Hsp90 分子伴侣与 BRAF 的结合,从而使 BRAF 处于有利于二聚化的活性开放构象中。这些具有高二聚体倾向的 BRAF 突变体维持了长时间的 ERK 信号传导,并且在体外和体内被 RAF 二聚体破坏剂 plx8394 有效靶向。相反,CRAF 和 ARAF 以未成熟单体的形式存在,与 Cdc37/Hsp90 分子伴侣高度包装,在 RAS-GTP 与其 N 端结合以及 14-3-3 支架与其 C 端结合的驱动下,二聚化后释放。成熟的 CRAF 和 ARAF 二聚体也像非 V600 BRAF 突变体一样维持了长时间的 ERK 信号传导,这是由于缺乏 C 端 Cdc37/Hsp90 结合片段。结论:Cdc37/Hsp90 分子伴侣和 14-3-3 支架协同促进 RAF 蛋白从开放活性二聚体转变为封闭无活性单体。非 V600 突变会破坏这种调节机制,并将 RAF 困在二聚体中,而二聚体可能成为 RAF 二聚体破坏剂的目标。
基本原理:使用Silybum marianum来防止退行性肝损害。其生物活性成分的分子机制,甲硅烷基蛋白仍然是神秘的,尽管膜稳定的特性,膜蛋白功能的调节和代谢调节已经讨论了数十年。方法:在基础和应力条件下以及体内小鼠中,在体外用肝细胞细胞系和原代单核细胞进行实验。定量脂肪组学用于检测磷脂和甘油三酸酯的变化。通过蛋白质印迹,定量PCR,显微镜,酶活性测定,代谢通量研究证实了关键发现,并使用选择性抑制剂研究了功能关系。结果:我们表明,具体来说,立体异构体a依赖丁A降低了甘油三酸酯水平和脂质液滴含量,同时富集了主要的磷脂类别,并在正常和前病前的体内和小鼠肝脏中保持人体肝肝中的人肝肝细胞中的稳态磷脂组成。相反,在基于细胞的脂质过载和脂肪毒性应激的基于细胞的疾病模型中,甲硅豆蛋白治疗主要耗尽甘油三酸酯。从机械上讲,甲硅烷基蛋白/甲硅烷基抑制磷脂降解酶,根据条件的不同程度诱导磷脂生物合成,并降低甘油三酸酯的重塑/生物合成,同时诱导复杂的复杂型固醇酸和酸性酸含量。富集肝磷脂和细胞内膜扩张与生物转化能力的增强有关。结构活性关系研究强调了甘油三烯烃A在甘油三酸酯还原中的1,4-苯甲二基二烷环构型的重要性,而在磷脂积累中,甘油三醇的饱和2,3-键。结论:我们的研究解释了助长肝脂质重塑的助长的结构特征,并表明,甲硅烷基蛋白/甲硅豆丁蛋白可以保护温和代谢失调的个体的肝脏,涉及脂质类从triglyciderides转换为磷脂的脂肪切换到磷脂的状态,它可能与磷酸化的状态相关。
Healthbook Virtual“瑞士Theranostics研讨会2025”日期和时间:星期四; 2025年4月3日; 17:00-19:35语言:英语格式:虚拟椅子:PD Aurelius Omlin博士,Onkozentrum Zurich教授Niklaus Schaefer博士,Chuv,Lausanne议程
摘要 - 审查总结了纳米医学中基于石墨烯和基于石墨烯的纳米酸盐(GBN)应用的前景,包括药物递送,光热和光动力疗法以及在癌症治疗中的Theranostics。GBN在科学和医学的各个领域的应用是由于石墨烯的独特特性允许开发新型的开创性生物医学应用。审查描述了用于生产新靶向石墨烯的生物医学剂的当前方法,用于肿瘤的肿瘤,光热治疗和光动力疗法。对出版物和FDA数据碱基的分析表明,尽管对全球进行石墨烯基材料进行了大量临床研究,但缺乏有关使用基于石墨烯的偶联物用于靶向药物输送和诊断的临床试验的信息。该评论将有助于研究碳纳米结构,材料科学,药物化学和纳米医学的研究人员。
肿瘤不仅由恶性细胞组成,还由基质细胞组成,其中包括血管细胞、炎症细胞和活化成纤维细胞,在具有强烈促纤维化反应的肿瘤中,基质细胞可占总肿瘤体积的 90% 以上。已知基质细胞亚群(称为癌相关成纤维细胞 (CAF))参与肿瘤的生长、迁移和进展。CAF 可能由多种细胞发育而成,例如局部成纤维细胞、循环成纤维细胞、脂肪细胞、骨髓衍生干细胞、血管内皮细胞,甚至通过内皮-间质转化由癌细胞发育而成 ( 1,2 )。这种来源的异质性导致具有不同功能的异质蛋白质组,也是观察到 CAF 没有唯一的单一标记的生物学背景 ( 3,4 )。最知名的标志物是平滑肌肌动蛋白、血小板衍生的生长因子 b 和成纤维细胞活化蛋白 (FAP) (1)。Kilvaer 等人在对非小细胞肺癌患者的免疫组织化学分析中发现,成纤维细胞和基质标志物血小板衍生的生长因子 a、血小板衍生的生长因子 b、FAP-1 和波形蛋白仅表现出弱相关性;平滑肌肌动蛋白与任何其他标志物均不相关。因此,由于 CAF 来源的异质性,表型不同的亚群的存在可能有所不同 (3)。FAP 在许多肿瘤实体的基质中过度表达,可能对成像和治疗有用。此外,FAP 是一种膜结合酶,具有二肽基肽酶和内肽酶活性,已知在胚胎发生期间的正常发育过程和组织重塑中发挥作用( 2 )。它在成人正常组织中没有明显表达。在伤口愈合、炎症(如关节炎、动脉粥样硬化斑块、纤维化)以及心肌梗死后的缺血性心脏组织和超过 90% 的上皮癌中,FAP 均有高表达( 1,2,5 )。
摘要:乳腺癌是全球女性癌症相关发病率和死亡率的主要原因之一。早期诊断和有效治疗所有类型的癌症对于获得良好的预后至关重要。诊断时肿瘤较小的患者的存活率明显较高,癌症致命的可能性也显著降低。因此,许多新技术正在被开发用于早期检测原发性肿瘤以及远处转移和复发性疾病,以有效管理乳腺癌。治疗诊断学已成为同时诊断、成像和治疗癌症的新范例。它有可能通过个性化治疗提供及时和更好的患者护理。在纳米治疗诊断学中,细胞特异性靶向部分、成像剂和治疗剂可以嵌入单一配方中以实现有效治疗。在这篇综述中,我们将重点介绍乳腺癌管理的不同诊断技术和治疗策略,并探讨乳腺癌治疗诊断学的最新进展。我们的主要重点是总结最近的研究论文和专利中报道的乳腺癌诊断和治疗的最新趋势和技术,并讨论有效乳腺癌治疗的未来前景。
正电子发射断层扫描(PET)成像,利用丙氧化葡萄糖(FDG)作为主要的放射性示踪剂,其显着提高了核肿瘤学领域。然而,其有效性受到限制的限制和对某些类型肿瘤的敏感性不足的限制。1这一挑战推动了寻找新型分子探针以增强或补充癌症管理中的FDG,尤其是在精确肿瘤学的进步和癌症发生率上升和死亡率的上升中。2020年全球癌症观察的最新统计数据报告说,全球大约有1,930万例新的癌症病例和1000万个与癌症有关的死亡。2这些发现强调了在抗癌作斗争中迫切需要更有效的诊断工具。癌症的发展,进展和转移会在肿瘤微膜中引起无数的动态变化,其中包括细胞外基质和各种细胞类型,包括癌症相关的纤维细胞(CAFS),免疫细胞和血管内皮细胞。在其中,CAF在肿瘤生长中起着至关重要的作用,并通过促进免疫逃避,细胞外基质重塑,新血管生成和耐药性,使其成为癌症研究和治疗策略的关键重点。3
简介:乳腺癌是一种复杂的疾病,是全球女性癌症的主要原因。常规治疗方式包括手术、化疗、放射疗法和激素疗法;所有这些方法都有其局限性,并且经常导致严重的副作用或毒性。基于治疗诊断方法的靶向放射性核素治疗已成功应用于多种恶性肿瘤,例如前列腺癌、甲状腺癌和神经内分泌肿瘤。一些研究也强调了治疗诊断在乳腺癌中的应用潜力。目的:本综述旨在概述乳腺癌中最有前景的当前和未来治疗诊断方法。讨论:讨论包括迄今为止使用的一些最成功的靶点的临床前和临床数据。潜在治疗诊断方法的例子包括针对人表皮生长因子受体 2 (HER2) 表达、血管生成、肿瘤微环境方面、胃泌素释放肽受体 (GRPR)、前列腺特异性膜抗原 (PSMA) 和趋化因子受体 4 (CXCR-4) 表达的方法。广泛的临床实施仍然存在若干挑战,包括监管部门批准、获得各种放射性药物和成像技术、成本效益以及缺乏可靠的临床数据。结论:治疗诊断方法有可能大大改善乳腺癌患者的诊断、治疗和结果。需要进行更多研究来充分探索这些方法的潜力并确定最佳潜在目标,同时考虑可行性、成本、功效、副作用和结果。
我国核医学起步于1956年,随着经济的快速发展和精准医疗的不断突破,近年来取得了长足进步。近1200家医院的近1.3万名工作人员每年为390多万名患者提供服务。近十年来,放射性药物产业发展迅速,初步形成了临床用药和基础研究用放射性药物生产的完整产业链。PET/CT等先进设备正在国内生产,甚至在国外安装。近年来,新型靶向探针的筛选、合成及其临床应用的研究越来越受到重视,各种具有潜在临床价值的新型示踪剂正在深入研究。与此同时,68Ga和177Lu标记的肿瘤靶向探针等已在越来越多的医院用于治疗,并将获得国家药品监督管理局的批准。未来10-20年,随着中国政府推出《医用同位素中长期发展规划(2021-2035年)》,中国核医学发展潜力巨大。随着制造业自主创新的兴起,放射性药品短缺的局面将得到有效遏制。我们预计到2035年,核医学规模将至少增加一倍,覆盖所有高级医院,实现中国“一县一科”的目标。
1。中国夏安克西XI'AN XIJING医院泌尿外科系。 2。 Xijing Innovation Research Institute,第四军科医科大学,Xi'an,Shaanxi,中国Xijing Innovation Research Institute,Xijing Innovation Research Institute,。 3。 新加坡新加坡国立大学的Yong Loo Lin医学院诊断放射学系,119074,新加坡。 4。 新加坡国立大学新加坡国立大学的Yong lin医学学院转化医学中心,新加坡117599,新加坡。 5。 纳米医学转化研究计划,新加坡新加坡国立大学Yong Loo Lin医学院,新加坡117597,新加坡。 6。 中国西北理工大学医学研究所,中国夏安西。 7。 分子与细胞生物学研究所,科学,技术和研究机构(A*Star),61 Biopolis Drive,Proteos,138673,新加坡,新加坡。 8。 Yong Loo Lin医学院的Excellenece Theranostics Center,新加坡国立大学,新加坡Helios 11 Biopolis Way,新加坡138667,新加坡。中国夏安克西XI'AN XIJING医院泌尿外科系。2。Xijing Innovation Research Institute,第四军科医科大学,Xi'an,Shaanxi,中国Xijing Innovation Research Institute,Xijing Innovation Research Institute,。 3。 新加坡新加坡国立大学的Yong Loo Lin医学院诊断放射学系,119074,新加坡。 4。 新加坡国立大学新加坡国立大学的Yong lin医学学院转化医学中心,新加坡117599,新加坡。 5。 纳米医学转化研究计划,新加坡新加坡国立大学Yong Loo Lin医学院,新加坡117597,新加坡。 6。 中国西北理工大学医学研究所,中国夏安西。 7。 分子与细胞生物学研究所,科学,技术和研究机构(A*Star),61 Biopolis Drive,Proteos,138673,新加坡,新加坡。 8。 Yong Loo Lin医学院的Excellenece Theranostics Center,新加坡国立大学,新加坡Helios 11 Biopolis Way,新加坡138667,新加坡。。3。新加坡新加坡国立大学的Yong Loo Lin医学院诊断放射学系,119074,新加坡。4。新加坡国立大学新加坡国立大学的Yong lin医学学院转化医学中心,新加坡117599,新加坡。5。纳米医学转化研究计划,新加坡新加坡国立大学Yong Loo Lin医学院,新加坡117597,新加坡。 6。 中国西北理工大学医学研究所,中国夏安西。 7。 分子与细胞生物学研究所,科学,技术和研究机构(A*Star),61 Biopolis Drive,Proteos,138673,新加坡,新加坡。 8。 Yong Loo Lin医学院的Excellenece Theranostics Center,新加坡国立大学,新加坡Helios 11 Biopolis Way,新加坡138667,新加坡。纳米医学转化研究计划,新加坡新加坡国立大学Yong Loo Lin医学院,新加坡117597,新加坡。6。中国西北理工大学医学研究所,中国夏安西。7。分子与细胞生物学研究所,科学,技术和研究机构(A*Star),61 Biopolis Drive,Proteos,138673,新加坡,新加坡。8。Yong Loo Lin医学院的Excellenece Theranostics Center,新加坡国立大学,新加坡Helios 11 Biopolis Way,新加坡138667,新加坡。Yong Loo Lin医学院的Excellenece Theranostics Center,新加坡国立大学,新加坡Helios 11 Biopolis Way,新加坡138667,新加坡。