摘要 - 将无人驾驶汽车(UAV)整合到搜救(SAR)任务中提出了提高运营效率和有效性的有前途的途径。但是,这些任务的成功不仅取决于无人机的技术能力,还取决于他们的接受和与人类在地面上的互动。本文探讨了以人为中心因素对SAR任务的无人机轨迹计划的影响。我们介绍了一种基于分析层次结构过程增强的强化学习和基于新颖的相似性的经验重播,以优化无人机轨迹,平衡运营目标与人类舒适性和安全考虑因素。另外,通过一项全面的调查,我们研究了性别线索和拟人化设计对无人机设计对公众接受和信任的影响,从而揭示了对SAR中无人机互动策略的重大影响。我们的贡献包括(1)无人机轨迹计划的增强学习框架,该框架动态整合了多目标考虑因素,(2)对人类对性别和拟人化无人机的看法在SAR上下文中的分析,(3)基于相似性的经验重播的应用,以在复杂的SAR场景中提高学习效率。这些发现为设计无人机系统提供了宝贵的见解,这些系统不仅在技术上熟练,而且还与以人为本的价值观保持一致。
抽象的轨迹预测基于其历史轨迹附近的动作。准确的轨迹预测(或简而言之)对于自动驾驶汽车(AVS)至关重要。现有的攻击通过直接操纵攻击者AV的历史轨迹来损害受害者AV的预测模型,该攻击者的历史轨迹有限。本文首次探讨了一种间接攻击方法,该方法通过对受害者AV的感知模块的攻击引起预测错误。尽管已经证明,通过将一些对象放置在战略位置,对基于激光雷达的感知的物理可实现的攻击是可能的,但是从广阔的搜索空间中找到一个对象位置,以便为了在不同的受害者AV速度下对预测进行有效的预测,这仍然是一个开放的挑战。通过分析,我们观察到一个预测模型容易出现在场景中的一个点上的攻击。顺便说一句,我们提出了一个新颖的两阶段攻击框架来实现单点攻击。预测侧攻击的第一阶段有效地识别出在基于对象的攻击下对概念的检测结果的分布,这是对预测模型的状态扰动,这些模型有效且对速度不敏感。在匹配的第二阶段,我们将可行的对象位置与发现的状态扰动匹配。我们使用公共自主驾驶数据集进行评估表明,我们的攻击率最高63%,受害者AV的各种危险响应。我们攻击的有效性也在真实的测试台车上策划。据我们所知,这项研究是从基于激光雷达的感知到自主驾驶预测的首次安全分析,从而导致对预测的现实攻击。 为了抵消拟议的攻击,讨论了潜在的防御措施。据我们所知,这项研究是从基于激光雷达的感知到自主驾驶预测的首次安全分析,从而导致对预测的现实攻击。为了抵消拟议的攻击,讨论了潜在的防御措施。
工业机器人在当今的制造业中是必不可少的。尽管如此,许多任务仍然需要人类的智力或灵巧性。因此,必须启用人和机器人在工作区中的任务共存甚至协作。在这种情况下,人类的安全至关重要,必须确保在任务执行效率较高的同时,机器人不会伤害人。过去,这是通过使用固体金属围栏完全分离人和机器人工作区来实现的。随后,使用激光窗帘来检测人类何时进入机器人的工作区,这触发了一个完整的停止。僵化的壁垒今天仍然在很大程度上被使用,而趋势是共享工作区。这需要监视和预测人类和机器人的运动,以确保避免碰撞。绝对必要时才应采取干预行动。
。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
摘要:本文提出了一个用于自动驾驶汽车轨迹计划和跟踪的层次控制框架,以应对准确遵循高速,限制性操作的挑战。提出的时间优势轨迹计划和跟踪(TOTPT)框架利用层次控制结构,具有离线轨迹优化(TRO)模块和在线非线性模型预测性控制(NMPC)模块。TRO层使用直接搭档方法生成最小单圈时间轨迹,该方法优化了车辆的路径,速度和控制输入,以达到最快的圈速时间,同时尊重车辆动力学和轨道约束。NMPC层负责准确跟踪TRO实时生成的参考轨迹。NMPC还结合了一种预览算法,该算法利用预测的未来旅行距离来估算下一个时间步骤的最佳参考速度和曲率,从而改善了整体跟踪性能。在加泰罗尼亚电路上的仿真结果证明了该框架以平均速度为116 km/h准确地遵循时间优势的赛车的能力,最大侧向误差为0.32 m。 NMPC模块使用具有实时迭代(RTI)方案的ACADOS求解器来实现毫秒级计算时间,从而可以在自动驾驶汽车中实时实施它。
路径特征是有效捕获路径的分析和几何特性的路径的强大表示,具有有用的代数特性,包括通过张量产品快速串联路径的特性。签名最近在用于时间序列分析的机器学习问题中广泛采用。在这项工作中,我们建立了通常用于最佳控制和吸引路径签名属性的价值函数之间的连接。这些连接激发了我们的新颖控制框架,具有签名转换,从而有效地将Bellman方程推广到轨迹空间。我们分析框架的属性和优势,称为签名控制。特别是我们证明(i)它自然可以处理不同/适应性的时间步骤; (ii)它比价值功能更新更有效地传播更高级别的信息; (iii)对于长期推出而言,动态系统错误指定是可靠的。作为我们框架的特定情况,我们设计了一种模型预测控制方法。此方法概括了整体控制,适合未知干扰的问题。在模拟中测试了所提出的算法,其中包括可区分的物理模型,包括典型的控制和机器人技术任务,例如点质量,ant模型的曲线跟随以及机器人操纵器。关键字:决策,路径签名,钟声方程,积分控制,模型预测控制,机器人技术
在土地或海洋无法到达的区域中,可以用降落伞从空中传递必要的物资。空投是人道主义援助行动和军事行动中常用的补给方法。气流补充的最重要局限性是货物可能受风的影响并落入不良区域,飞机容易受到敌方防空系统的影响。通过保护飞机免受敌方防空武器的侵害,并防止有效载荷被风或不良人的手中吹走,可以将GPS引导的,可通道的降落伞用于高空,长距离空投。在这项研究中,制造了土耳其武装部队所需的系统的设计,创建了指挥和控制单元,并提出了轨迹跟踪算法。
摘要:随着当今社会的快速发展,交通环境变得越来越复杂。作为智能车辆的重要组成部分,轨迹跟踪因其稳定性和安全性引起了极大的关注。在高速工作等极端工作条件下,准确性和不稳定性很容易发生。在本文中,为分布式驱动车辆提出了一种轨迹跟踪控制策略,以确保在高速和低固定限制条件下进行横向稳定性。模型预测控制器(MPC)用于控制前轮角度,并且设计了粒子群优化(PSO)算法以适应MPC控制参数。滑动模式控制器控制后轮角度,并且通过分析β-来判断车辆不稳定性度。β相平面。在本文中设计了不同不稳定性度的控制器。最后,扭矩分隔器的设计目的是考虑驱动防滑。设计的控制器通过CARSIM和MATLAB-SIMULINK共模拟验证。结果表明,本文设计的轨迹跟踪控制器有效地提高了在确保稳定性的前提下的跟踪精度。
摘要:在车辆中改变自动驾驶汽车的明智决定一直是该行业研究的焦点。依赖于预定义规则的传统巷道算法不适合现实道路条件的复杂性和变化。在这项研究中,我们提出了一种利用深层确定性策略梯度(DDPG)强化学习的算法,该算法与长期短期记忆(LSTM)轨迹预测模型集成在一起,称为LSTM-DDPG。在提出的LSTM-DDPG模型中,LSTM状态模块将观测值从观察模块转换为状态表示,然后作为DDPG Actor网络的直接输入。同时,LSTM预测模块通过完全连接的层将附近车辆的历史轨迹坐标转化为单词装饰向量,从而为周围车辆提供了预测的轨迹信息。这种综合的LSTM方法考虑了附近车辆对主体车辆改变车道决定的潜在影响。此外,我们的研究强调了改变车道的过程的安全性,效率和舒适性。因此,我们为LSTM-DDPG算法设计了奖励和惩罚功能,并确定了最佳网络结构参数。然后在使用MATLAB/SIMULINK构建的模拟平台上测试该算法。我们的发现表明,LSTM-DDPG模型提供了涉及车辆相互作用的交通情况的更现实表示。这项研究为自动驾驶汽车的先进车道决定提供了新的想法。与传统的DDPG算法相比,LSTM-DDPG在归一化后平均单步奖励增长了7.4%,强调了其在更换车道改变车道的安全性和效率方面的出色性能。