引言胰腺导管腺癌(PDA)是最致命的癌症形式之一(1,2)。这部分归因于强大的转移性行为和对分子,免疫和放射治疗干预措施的耐药性多种机制(3,4)。重要的是,PDA的特征是强大的基质纤维化和免疫抑制反应,在原发性和转移性疾病中产生无药物和抗肿瘤免疫力 - 无药物(5-9)。在极少数情况下,具有免疫检查点阻滞(ICB)的免疫治疗(ICB)已经成功(10),但大多数胰腺癌对ICB具有抵抗力(11)。然而,克服PDA中发现的基质屏障可以使这种疾病容易受到ICB的影响(12-16),证明在正确的治疗条件下,PDA可以在PDA中发生强大的抗肿瘤免疫反应。除了致密的细胞外基质(ECM)以及癌症粘结的成纤维细胞(CAF)的免疫抑制行为之外,PDA中有效抗肿瘤免疫反应的主要障碍之一是免疫抑制性肿瘤相关的巨型乳液的丰富性和活性(TAM)的丰富性和活性。的确,髓样衍生的抑制细胞(MDSC)和巨噬细胞通常是PDA中最丰富的基质种群(14,20)。这对疾病的进展和对治疗的抵抗具有很大的影响,因为明显极化的巨噬细胞能够促进肿瘤进展的所有步骤,包括癌细胞增殖,侵袭和转移性部位的定殖,以及具有鲁棒性炎症性和免疫抑制功能(21-24)。此外,除了
胱天蛋白酶家族的蛋白酶以及 Toll/白细胞介素-1 受体 (TIR) 结构域蛋白在人类的先天免疫和调节细胞死亡中发挥着核心作用。在本研究中,我们描述了一种由胱天蛋白酶样蛋白酶和 TIR 结构域蛋白组成的细菌免疫系统。我们发现,一旦 TIR 蛋白识别出噬菌体入侵,它就会产生以前未知的免疫信号分子 ADP-环[N7:1′′]-核糖 (N7-cADPR)。这种分子特异性地激活细菌胱天蛋白酶样蛋白酶,然后无差别地降解细胞蛋白以阻止噬菌体复制。TIR-胱天蛋白酶防御系统(我们称之为 IV 型 Thoeris)在细菌中含量丰富,可有效防止噬菌体繁殖。我们的研究突出了 TIR 产生的免疫信号分子的多样性,并表明由胱天蛋白酶家族蛋白酶调节的细胞死亡是一种古老的先天免疫机制。
105,也可以根据CC0许可使用。(未通过同行评审认证)是作者/资助者。本文是美国政府的工作。不受此前版本的版权持有人的版权,该版本于2024年6月11日发布。 https://doi.org/10.1101/2023.12.14.571787 doi:Biorxiv Preprint
在这项研究中,研究人员专注于IL-18。他们发现肿瘤细胞可以通过caspase-3裂解产生新型的IL-18形式,该裂解与传统的成熟IL-18途径无关。与成熟的IL-18不同,这种短形式不会退出细胞,而是进入细胞核,在该细胞核中促进了STAT1和ISG15分泌的磷酸化,从而增强了NK细胞抗肿瘤功能。
这是接受出版的同行评审纸的PDF文件。尽管未经编辑,但内容已受到初步格式。自然正在为排版纸的早期版本作为我们的作者和读者的服务。文本和数字将在本文以最终形式发表之前进行复制和证明审查。请注意,在生产过程中可能会发现可能影响内容的错误,并且所有法律免责声明都适用。
摘要 我们之前已表明,2 周的严格食物限制 (sFR) 饮食(对照 (CT) 饮食的 40% 热量摄入)上调了雌性 Fischer 大鼠的循环肾素血管紧张素 (Ang) 系统 (RAS),这很可能是由于血浆容量下降所致。在本研究中,我们调查了中枢 RAS 在与 sFR 相关的平均动脉压 (MAP) 和心率 (HR) 失调中的作用。虽然 sFR 降低了基础平均 MAP 和 HR,但对脑室 (icv) 微量注射 Ang-[1-8] 的升压反应幅度不受影响;然而,在 sFR 大鼠中微量注射 Ang-[1-8] 26 分钟后 HR 降低了 57 ± 13 bpm,微量注射氯沙坦后也观察到了类似的反应。下丘脑中 Ang-[1-8] 的主要分解代谢途径是通过 Ang-[1-7];然而,CT 动物和 sFR 动物之间 Ang-[1-8] 合成或降解的速率没有差异。虽然 sFR 对穹窿下器 (SFO)、终板血管器 (OVLT) 和第三脑室旁前腹侧正中视前核 (MnPO) 中的 AT 1 R 结合没有影响,但下丘脑旁核 (PVN) 中的配体结合增加了 1.4 倍。这些发现表明,sFR 通过增加 PVN 中的 AT 1 R 表达来刺激中枢 RAS,作为对基础 MAP 和 HR 降低的补偿反应。这些发现对于经历 sFR 时期的人们具有重要意义,因为激活的中枢 RAS 可能会增加他们患上涉及 RAS 过度激活的疾病(包括肾脏和心血管疾病)的风险。
、闫彤 1 、陈浩然 1 、王嘉华 1 、王英怡 4 、杨叶琴 5 、项略 1 、池在龙 1 、任开群 2 、林斌 6 、林戈 7,8 、李劲松 3,4 、刘勇 1,* 和顾锋 1,2,9,* 来自 1 温州医科大学附属眼视光学院、卫生部视觉科学国家重点实验室、卫生部重点实验室和浙江省眼视光重点实验室,浙江省温州;2 湖南师范大学医学院、湖南省模式动物与干细胞生物学重点实验室、生殖与转化医学湖南省工程研究中心,长沙,中国; 3 中国科学院上海生物化学与细胞生物学研究所、上海分子男科学重点实验室、细胞生物学国家重点实验室、分子细胞科学卓越中心,上海,中国;4 上海科技大学生命科学与技术学院,上海,中国;5 浙江中医药大学护理学院,浙江杭州,中国;6 香港理工大学眼科视光学院,香港,中国;7 中信湘雅生殖与遗传医院,湖南省生殖与遗传临床研究中心,长沙,中国;8 中南大学基础医学院生殖与干细胞工程研究所,长沙,中国;9 湖南师范大学附属广秀医院(湖南广秀医院),长沙,中国
1植物科学计划,生物与环境科学与工程部(BESE),阿卜杜拉科学技术大学(KAST)国王;沙特阿拉伯的塔瓦尔。2 Csiro农业和食物;堪培拉,澳大利亚澳大利亚首都地区。3福建泰旺作物害虫的生态控制国家主要实验室,遗传学教育部的主要实验室,繁殖和多种作物的多种利用,植物免疫中心,福建农业和林业大学;中国富州。4 Bioscience计划,Smart Health Initiative,Bese,Kaust;沙特阿拉伯的塔瓦尔。5明尼苏达大学植物病理学系;美国明尼苏达州圣保罗。 6植物科学系,自由州大学;布隆方丹,南非。 *相应的作者。 电子邮件:peter.dodds@csiro.au,brande.wulff@kaust.edu.sa†这些作者为这项工作做出了同样的贡献。 摘要:大多数植物抗性基因编码膜锚定的受体样蛋白或细胞内核苷酸结合和富含亮氨酸的重复(NLR)受体。 在小麦和大麦中,串联激酶(TKS)已成为新的抗药性决定因素。 了解小麦茎锈蚀蛋白SR62 TK的作案手法,我们鉴定了两个遗传相互作用者 - SR62 TK功能所需的宿主基因和相应的真菌AVRSR62效应子。 我们发现SR62基因座是由编码SR62 TK和NLR(SR62 NLR)的挖掘模块组成的。 AVRSR62与SR62 TK的N末端激酶结合。5明尼苏达大学植物病理学系;美国明尼苏达州圣保罗。6植物科学系,自由州大学;布隆方丹,南非。 *相应的作者。 电子邮件:peter.dodds@csiro.au,brande.wulff@kaust.edu.sa†这些作者为这项工作做出了同样的贡献。 摘要:大多数植物抗性基因编码膜锚定的受体样蛋白或细胞内核苷酸结合和富含亮氨酸的重复(NLR)受体。 在小麦和大麦中,串联激酶(TKS)已成为新的抗药性决定因素。 了解小麦茎锈蚀蛋白SR62 TK的作案手法,我们鉴定了两个遗传相互作用者 - SR62 TK功能所需的宿主基因和相应的真菌AVRSR62效应子。 我们发现SR62基因座是由编码SR62 TK和NLR(SR62 NLR)的挖掘模块组成的。 AVRSR62与SR62 TK的N末端激酶结合。6植物科学系,自由州大学;布隆方丹,南非。*相应的作者。电子邮件:peter.dodds@csiro.au,brande.wulff@kaust.edu.sa†这些作者为这项工作做出了同样的贡献。摘要:大多数植物抗性基因编码膜锚定的受体样蛋白或细胞内核苷酸结合和富含亮氨酸的重复(NLR)受体。在小麦和大麦中,串联激酶(TKS)已成为新的抗药性决定因素。了解小麦茎锈蚀蛋白SR62 TK的作案手法,我们鉴定了两个遗传相互作用者 - SR62 TK功能所需的宿主基因和相应的真菌AVRSR62效应子。我们发现SR62基因座是由编码SR62 TK和NLR(SR62 NLR)的挖掘模块组成的。AVRSR62与SR62 TK的N末端激酶结合。这种触发了C末端激酶的位移,允许其募集SR62 NLR以激活免疫反应。了解这种两分量抗性复合物的机制将有助于工程和繁殖,以实现耐用性。
摘要 BLM 是一种多功能解旋酶,在维持基因组稳定性方面起着关键作用。在 DNA 复制和修复的许多步骤中,它处理不同的 DNA 底物,但不处理缺口 DNA。然而,BLM 如何为各种功能做好准备仍然难以捉摸。在这里,使用组合单分子方法,我们发现当施加外部不稳定力时,大量 BLM 确实可以单向解开缺口的 dsDNA。令人惊讶的是,人类复制蛋白 A (hRPA) 不仅确保有限数量的 BLM 在减小的力下逐步解开缺口的 dsDNA,而且还允许 BLM 在完整和缺口的 ssDNA 上易位,从而产生双向解旋模式。这种激活需要 BLM 靶向缺口,并且溶液中存在游离 hRPA,而它们之间的直接相互作用是可有可无的。我们的研究结果展示了 BLM 的新型 DNA 解旋活性,这可能促进其在 DNA 修复中的功能转换。
光动力疗法(PDT)依赖于一系列导致细胞死亡的光学和光化学反应。虽然对各种癌症有效,但由于黑色素的高光吸收,PDT在治疗色素黑色素瘤方面的成功率较低。在这里,使用〜100 fs脉冲的近近红外激光光对光子坐骨的2-光子激发(2p -pdt)来解决此限制。使用色素和非有色的鼠类黑色素瘤克隆细胞系在体外阐明黑色素在启用而不是阻碍2p -PDT中的关键作用。比较了临床光敏剂(visudyne)和卟啉二聚体(Oxdime)之间的光循环毒素 - 比较600-倍倍高于σ2p值。出乎意料的是,尽管两种细胞系中的1p -PDT响应都是相似的,但2p激活在杀死色素方面比非色素细胞更有效,这表明黑色素2p -pdt具有主要的作用。在体内的结膜黑色素瘤模型中证明了临床翻译的潜力,在该模型中完全消除了小肿瘤。the工作阐明了在多 - 光子PDT中的黑色素贡献,从而使基于光的治疗方法可以提高,这些治疗以前认为在色素的肿瘤中不适合使用。