摘要:根据 Nielsen 及其合作者的开创性工作,合适算子空间的几何实现中最小测地线的长度提供了操作量子复杂性的度量。与基于将所需操作构建为乘积所需的最少门数的原始复杂性概念相比,这种几何方法相当于一个更具体和可计算的定义,但在具有高维希尔伯特空间的系统中,它的评估并不简单。通过考虑与由系统中少量相关算子生成的合适有限维群相关的几何,可以更轻松地评估几何公式。通过这种方式,该方法特别应用于谐振子,这也是本文感兴趣的。然而,群论中微妙且以前未被认识到的问题可能会导致无法预见的复杂情况,从而促使人们提出一种新的公式,该公式在大多数所需步骤中仍处于底层李代数的水平。因此,可以在低维环境中发现关于复杂性的新见解,并有可能系统地扩展到更高维度以及相互作用。具体示例包括与谐振子、倒谐振子和耦合谐振子相关的各种目标幺正算子的量子复杂性。该方法的普遍性通过应用于具有三次项的非谐振子来证明。
贡献者的风格多种多样。20 世纪 60 年代中期,对称性游戏发展非常迅速;人们进行推测并获得了回报。那些日子似乎已经过去了,那些试图进行革命的人的贡献总体上并不十分鼓舞人心。如果没有对朴素夸克模型基础的强烈偏见,达利茨评论中的大量证据,加上米特拉的评论,将使该理论得到普遍接受。如果有人发现夸克,那将是令人信服的,但正如琼斯遗憾地总结的那样,“我怀疑大多数实验主义者认为物理夸克要么不可观察,要么不存在”。利普金关于夸克模型作为强子动力学指南的讨论很有趣,例如梅什科夫、大久保和奥弗塞斯对对称性预测与实验的各种比较也很有趣。还有关于电流代数、部分守恒轴向矢量电流 (PCAC)、无限多重态等的论文。Yodh 有一篇非常详尽的文章,介绍了对称方案预测的 E* 共振的实验情况。但人们觉得可以通过查阅粒子数据组 (免费) 的最新出版物来获取更多最新信息。COLIN WrLKIN
摘要。最近对新型的线性变换的几何形状构成了新的兴趣。这激发了对此类不变的研究,以在根系,反射群,谎言组和谎言的背景下进行某种类型的几何转换:Coxeter转换。我们使用高性能计算对所有Coxeter转换进行了所有Coxeter转换的详尽计算,以选择简单根的基础并计算其不变性。此计算代数范式生成一个数据集,然后可以使用来自数据科学的技术(例如智能和无监督的机器学习)进行开采。在本文中,我们关注神经网络分类和主成分分析。由于输出(不变性)是由选择根源的选择以及Coxeter元素中相应反射的置换顺序完全确定的,因此我们期望在映射中进行巨大的退化。这为机器学习提供了完美的设置,实际上,我们看到数据集可以被机器学习以非常高的精度。本文是使用Cli杀性代数在实验数学方面进行的泵送研究,表明此类cli效应代数数据集可以适合机器学习,并阐明了这些新颖的几何学和其他知名几何不变的关系,并引起了分析结果。
ErwinSchrödinger与爱因斯坦(Einstein)分享了关于原子过程研究中发现的法律的含义的极大困惑。在他们的Gedankenexperiment [1]中,爱因斯坦,Podolski和Rosen显示了“物理现实的要素”与量子力学中的分离性和独立性的概念之间的相互关系(请参阅最近对这种情况的最新分析[2])。schrödinger在一系列涉及宏观身体(猫)和量子系统[3]的著名实验的一系列反映中表明了他的困惑,他在其中争论了“常识”之间的冲突,而我们现在将我们称为猫和一些放射性材料之间的纠缠状态。纠缠状态的实验结构通常不是一个琐碎的问题,这就是为什么在被称为“资源理论”的现代理论中被认为是宝贵的资源[4]。在本文中,我们将解决一个问题,该问题强调了先前的一些讨论,其中包括确定是否从由经典和量子部分组成的复合系统开始,并且在可分离状态下,可以通过系统的单一进化来构建纠缠状态。在von Neumann代数理论的背景下,Raggio的定理[5]清楚地表明,这是不可能的,在这种情况下,在这种情况下,经典系统由其可观察的代数描述,这是Abelian von Neumann代数。
量子 Souriau 李群热力学:具有新见解和新结果的全面综述 1969 年,Jean-Marie Souriau 在几何力学框架内引入了“李群热力学”,为统计力学提供了一种新方法。F. Barbaresco 及其合作者已经证明了 Souriau 模型在信息几何和几何深度学习等各个领域的适用性。本文全面回顾了 Souriau 的辛模型向量子信息理论的扩展。在 F. Barbaresco 和 F. Guy-Balmaz 的工作基础上,他们强调了量子信息几何和李群热力学之间的强烈相似性,本综述探讨了李代数的酉表示的作用以及 Fisher 度量和 Bogoliubov-Kubo-Mori 度量之间的等价性。除了综述之外,本文还介绍了通过整合量子热力学的现代发展进一步扩展经典 Souriau 框架的新结果。具体来说,这项工作将“量子李群热力学”与共伴生轨道的几何学联系起来,利用基于凯勒结构的混合量子态几何框架。该框架包含辛形式、近复结构和黎曼度量,全面刻画了混合量子态的空间,为量子热力学的底层几何结构提供了更深入的见解。
摘要。最近对新型的线性变换的几何形状构成了新的兴趣。这激发了对此类不变的研究,以在根系,反射群,谎言组和谎言的背景下进行某种类型的几何转换:Coxeter转换。我们使用高性能计算对所有Coxeter转换进行了所有Coxeter转换的详尽计算,以选择简单根的基础并计算其不变性。此计算代数范式生成一个数据集,然后可以使用来自数据科学的技术(例如智能和无监督的机器学习)进行开采。在本文中,我们关注神经网络分类和主成分分析。由于输出(不变性)是由选择根源的选择以及Coxeter元素中相应反射的置换顺序完全确定的,因此我们期望在映射中进行巨大的退化。这为机器学习提供了完美的设置,实际上,我们看到数据集可以被机器学习以非常高的精度。本文是使用Cli杀性代数在实验数学方面进行的泵送研究,表明此类cli效应代数数据集可以适合机器学习,并阐明了这些新颖的几何学和其他知名几何不变的关系,并引起了分析结果。
量子维兰德不等式给出了最小长度 k 的最优上界,使得生成系统中元素的长度为 k 的乘积跨度为 M n ( C )。据推测,k 通常应为 O ( n 2 ) 阶。在本文中,我们概述了迄今为止文献中对该问题的研究情况及其与线性代数中一个经典问题(即代数 M n ( C ) 的长度)的关系。我们提供了量子维兰德不等式的一个通用版本,它以概率 1 给出了最优长度。更具体地说,我们基于 [ 1 ] 证明 k 通常为 Θ(log n ) 阶,而不是像一般情况那样,迄今为止最佳界限为 O ( n 2 log n )。我们的结果意味着随机量子通道的原始性指标有了新的界限。此外,我们得出了这样的结论:几乎任何具有周期性边界条件的平移不变 PEPS(特别是矩阵积态)在边长为 Ω(log n ) 阶的网格上都是局部哈密顿量的唯一基态,从而为长期悬而未决的投影纠缠对态问题提供了新的见解。我们观察到矩阵李代数具有类似的特征,并为随机李生成系统提供了数值结果。
摘要:对称性 SU(2) 及其几何布洛赫球渲染已成功应用于单个量子比特(自旋-1/2)的研究;然而,尽管此类系统对于量子信息处理至关重要,但将此类对称性和几何扩展到多个量子比特(甚至只有两个)的研究却少得多。在过去的二十年里,两种具有独立出发点和动机的不同方法已被结合起来用于此目的。一种方法是开发两个或更多量子比特的酉时间演化以研究量子关联;通过利用相关的李代数,特别是所涉及的汉密尔顿量的子代数,研究人员已经找到了与有限射影几何和组合设计的联系。几何学家通过研究射影环线和相关的有限几何,得出了平行的结论。本综述将量子物理学的李代数/群表示视角和几何代数视角结合在一起,以及它们与复四元数的联系。总之,这可以看作是费利克斯·克莱因的埃尔朗根对称和几何纲领的进一步发展。特别是,两个量子位的连续 SU(4) 李群的十五个生成器可以与有限射影几何、组合斯坦纳设计和有限四元群一一对应。我们考虑的非常不同的视角可能会为量子信息问题提供进一步的见解。扩展适用于多个量子位,以及更高自旋或更高维度的量子位。
其中 ϵ abc 是完全反对称张量,ϵ xyz = 1。该代数被称为旋转(即角动量分量)生成代数。这里,旋转不是在自旋的位置,而是在其“方向”上(加引号是因为当然不可能测量量子自旋的所有三个分量)。量子自旋的希尔伯特空间通过选择自旋算子的表示来定义。李代数的表示是一组满足对易关系的三个矩阵,对于 su (2),由 (3.1) 给出。不可约表示是一组矩阵,使得没有一个酉变换 US a U † 能使这三个矩阵块对角化。根据李代数理论,已知对于 su (2),每个整数 n 恰好有一组(最多酉变换)不可约 n × n 矩阵。出于很快就会明白的原因,对于所有整数和半整数 s ,习惯上都写为 n = 2 s + 1 。指标 s 通常被称为粒子的“自旋”,这有点令人困惑。因此,空间中固定点处的单个自旋为 s 的量子粒子具有希尔伯特空间 C 2 s +1 ,因此矩阵 S a 均为 (2 s + 1) × (2 s + 1)。正交基由任何一个矩阵的特征态给出。哪一个并不重要;任何选择的此类基都可以“旋转”(在自旋空间中!)为任何其他基。对于 s = 0,矩阵都由数字零组成;毫不奇怪,这被称为平凡表示。对于 s = 1 / 2,它变得有趣;S a = σ a ℏ / 2,其中 σ a 为
3本地领域,J。W. S. Cassels 4扭曲理论的介绍,第二版,S。A. Hugget&K。P. Tod 5介绍一般相对性介绍,L。P. Hughston&K。P. Tod 7 Evolution and Dynaligation Systems的理论,J。Hofbauer&K。Sigmund 8在Banach and Banach Suross and Banach Surfors and Banach Surfiens,G。J. O. J. O. J. O. J. O. J. O. J. O. Thurston, A. CASSON & S. BLEILER 11 Spacetime and singularities, G. NABER 12 Undergraduate algebraic geometry, M. REID 13 An introduction to Hankel operators, J. R. PARTINGTON 15 Presentations of groups, second edition , D. L. JOHNSON 17 Aspects of quantum field theory in curved spacetime, S. A. FULLING 18 Braids and coverings: Selected topics, V. LUNDSGAARD HANSEN 19 Steps在交换代数中,R。Y。尖锐的52个有限马尔可夫链和算法应用,O.HäggströmSharp 20沟通理论,C。M。Goldie&R。G. E. Pinch 21 Lie类型的有限群体的表示,F。Digne&J。Michel 22设计,图形,代码及其链接,P。J. Cameron&J。H. van Lint 23 Complecter Elgebraic complex Elgebraic Corvers,F。Kirwan,F。Kirwan 24在Ellipt Intife curvers of Ellipt curves,J。W. S. W. S. W. S. w. w. w. w. w. w. we. H. Hida 27 Hilbert Space:紧凑型操作员和Trace Throrem,J。Retherford28潜在理论28在Complex Lane中的潜在理论,T。Ransford29本科代数,M。REID31 laplacian,在Riemannian歧管32 laplbr的laplacian,Reid lapbrbra,Reid lapbrbra,Reid lapbra,Reid cummberg 32 lapbrbra,Reid cummberg 32 lapbra, I. MacDonald 33代数d -Modules的入门,S。C. Cotinho 34复杂代数表面,A。Beauville35 Young Tableaux,W。Fulton37小波的数学介绍,P。Wojtaszczyk38 Harmian Maps and for Sytorn for M. k. 40 Ergodic theory and dynamical systems, M. POLLICOTT & M. YURI 41 The algorithmic resolution of diophantine equations, N. P. SMART 42 Equilibrium states in ergodic theory, G. KELLER 43 Fourier analysis on finite groups and applications, A. TERRAS 44 Classical invariant theory, P. J. OLVER 45 Permutation groups, P. J. CAMERON 46 Riemann surfaces: A primer, A. BEARDON 47 Introductory lectures on rings and modules, J. BEACHY 48 Set theory, A. HAJNÁL & P. HAMBURGER 49 An introduction to K-theory for C *-algebras, M. RØRDAM, F. LARSEN & N. LAUSTSEN 50 A brief guide to algebraic number theory, H. P. F. SWINNERTON-DYER 51 Steps in commutative algebra, R. Y.