摘要:根据 Nielsen 及其合作者的开创性工作,合适算子空间的几何实现中最小测地线的长度提供了操作量子复杂性的度量。与基于将所需操作构建为乘积所需的最少门数的原始复杂性概念相比,这种几何方法相当于一个更具体和可计算的定义,但在具有高维希尔伯特空间的系统中,它的评估并不简单。通过考虑与由系统中少量相关算子生成的合适有限维群相关的几何,可以更轻松地评估几何公式。通过这种方式,该方法特别应用于谐振子,这也是本文感兴趣的。然而,群论中微妙且以前未被认识到的问题可能会导致无法预见的复杂情况,从而促使人们提出一种新的公式,该公式在大多数所需步骤中仍处于底层李代数的水平。因此,可以在低维环境中发现关于复杂性的新见解,并有可能系统地扩展到更高维度以及相互作用。具体示例包括与谐振子、倒谐振子和耦合谐振子相关的各种目标幺正算子的量子复杂性。该方法的普遍性通过应用于具有三次项的非谐振子来证明。