HPH 使用大振幅哨声器(即低于电子回旋频率的电磁波)产生能量为几十 eV(10-30 km/s,取决于推进剂选择)的等离子流。哨声器由固态开关电路以几十 kW 的功率驱动。直流线圈磁铁有助于哨声器的产生,额外的磁铁可使等离子体聚焦。
清洁产品最终进入废水处理厂的流出物(Tanabe 和 Kawata 2008)。由于它不易被生物降解、吸附或被传统氧化剂氧化,因此很难处理(Otto 和 Nagaraja 2007)。高级氧化工艺(AOP)通常用于去除 1,4-二氧六环(Otto 和 Nagaraja 2007;McElroy 等人 2019)。在这些过程中,会原位生成强氧化羟基自由基(·OH)来降解污染物。这些技术包括紫外高级氧化(UVAOP),其中紫外光用于将过氧化氢(H 2 O 2 )光解为·OH。同样,紫外氯 AOP 通过光解游离氯生成·OH。臭氧 (O3) 可用作水和废水处理中的氧化剂和消毒剂,通过其自催化分解和与有机物的反应生成·OH,而有机物也可以被 H2O2 催化 (von Sonntag & von Gunten 2012;Stefan 2018)。在这些过程中,通常需要大量的化学药剂。虽然对 AOP 在废水废水中去除 1,4-二氧六环的研究有限,但臭氧通常被认为是废水废水中最好的 AOP。这是因为高含量的溶解有机物可以清除羟基自由基,而且紫外线的透射率低 (Katsoyiannis 等人 2011;Lee 等人 2016;Sgroi 等人 2021)。然而,如果存在溴化物 (Br),臭氧 (和 UV-Cl 2 ) 可以形成溴酸盐,这是一种受监管的消毒副产物。电子束处理使用加速电子通过水的辐射分解产生大量的氧化和还原自由基,如公式 (1) 所示 ( Cooper 等人 1992 年; Wang 等人 2016 年):
本研究系统地分析和优化了纯铜电子束熔炼工艺。结果表明,为了可靠制造,应优化预热温度以避免孔隙率和部件变形。电子束应完全聚焦,以防止收缩空隙(与负散焦相关)和材料飞溅(与正散焦相关)。较低的网格间距(例如 100µm)可使表面更光滑,从而提高密度可靠性,而较高的网格间距可达到更长的悬垂。还采用了合适的起始轮廓策略来减轻边界孔隙率、降低侧面粗糙度并提高几何精度。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
增材制造 (AM) 仍是一项相对较新的技术。与从毛坯中去除材料的传统加工不同,AM 用于从空工作空间开始将原料逐层熔合成复杂形状。AM 能够制造复杂的零件几何形状和零件变体,而几乎无需额外制造成本。以前不可能制造的几何形状现在可以作为设计选项使用,例如弯曲的内部通道、复杂的晶格结构和设计的表面孔隙率 - 所有这些都可以重复生产。电子束粉末床熔合 (PBF-EB) 是一种 AM 方法,其中使用电子束将细颗粒粉末加工成零件。自诞生以来,PBF-EB 一直受到可供加工的材料数量的限制。本论文的目的是探索使用 PBF-EB 加工不锈钢的可能性。这项工作的重点是开发高效加工参数,目的是获得高密度成品材料,并了解工艺参数与零件由此产生的微观结构和其他质量方面之间的关系。两种不锈钢粉末,316LN(奥氏体)和超级双相 2507(奥氏体/铁素体),通过各种工艺参数使用各种熔化策略加工成固体零件。在选择一组以高加工速率生产高质量零件的参数之前,对密度、微观结构特征和机械性能进行评估和评定。这项工作的结论是,不锈钢非常适合 PBF-EB 加工,具有宽广的加工窗口。研究还表明,材料性能受所用加工参数的影响很大。对于超级双相不锈钢 2507,制造的部件需要进行制造后热处理才能达到所需的微观结构、相组成和拉伸性能,而 316LN 则可以在更大程度上直接使用,只要使用适当的制造准备和加工参数即可。
可以在血管造影套件中对大脑进行抽象背景锥束计算机断层扫描(CBCT)成像,以支持各种神经血管手术。仅依靠CBCT脑成像,由于与CT和各种成像伪像,即使在现代CBCT中,由于图像质量的劣质质量,因此仍然缺乏完全的诊断信心。目的是使用新的CBCT协议对图像伪像改进进行详细评估,该协议实现了新型的双轴“蝴蝶”轨迹。方法我们的研究包括47例接受CBCT成像的患者的94次扫描,以评估神经血管手术期间缺血或出血。对每个患者进行了传统的单轴“圆形”和新颖的双轴“蝴蝶”方案(同一患者对照)。每个大脑扫描都分为六个区域,并根据六个源自基于物理和基于患者的来源的伪影中的六个区域。结果双轴轨迹产生的CBCT图像明显少于传统的圆形扫描(全脑平均伪像得分,AS:0.20 vs 0.33),骨束硬化的改善最大(:0.13 vs 0.78)和Cone-Beam beam trifacts(as:0.04 vs 0.04 vs 0.55)。结论CBCT成像方案的最新发展已显着改善了图像伪像,这提高了中风的诊断信心,并支持急性缺血性中风患者的直接到血管造影套件转移方法。
由于自然过程和/或人类活动而堆积在月球表面的灰尘很容易粘附在宇航服、光学设备和机械部件等物体上。这可能导致灰尘危害,而灰尘危害已被视为未来月球探索的技术挑战之一。过去几年,人们研究了几种除尘技术。这里我们介绍了一种利用电子束清除表面灰尘的新方法。最近关于静电除尘的研究表明,灰尘颗粒之间形成的微腔内二次电子或光电子的发射和吸收会导致周围颗粒上积聚大量负电荷。这些颗粒之间随后产生的排斥力会导致它们从表面释放。我们在实验中使用了细小的月球模拟颗粒(JSC-1A,直径 < 25 μ m)。清洁性能是根据电子束能量和电流密度、表面材料以及初始灰尘层厚度进行测试的。结果表明,使用优化的电子束参数(~230 eV 和 1.5 至 3 μ A/cm 2 之间的最小电流密度),在 ~100 秒的时间内,整体清洁度可达到 75 – 85%,具体取决于初始灰尘层的厚度。发现宇航服样品和玻璃表面的最大清洁度相似。未来的工作将侧重于去除最后一层灰尘颗粒以及使用紫外线 (UV) 光的替代方法。
图 1.1:粒子物理学的标准模型,其中夸克及其反夸克伙伴为紫色,轻子和反轻子为绿色,规范玻色子为红色。该图还包括黄色的标量玻色子 [11]。
在快速发展的半导体制造领域,多光束掩模版写入机 (MBMW) 已成为光掩模生产的重要工具。光掩模对于不断缩小的半导体元件的生产至关重要。 IMS Nanofabrication 的高性能计算 (HPC) 小组开发的 MBMW 模拟器对理解和改进掩模生产中的写入技术做出了重大贡献。然而,当前 MBMW 模拟方法的一个关键挑战是准确模拟电子背散射等大规模效应的能力有限,而这对于高精度掩模制造至关重要。这项工作通过在 MBMW 模拟器中开发和实施全面的多尺度建模来解决这一差距。主要目标是准确、有效地模拟背散射效应,从而提高模拟器对掩模写入过程中电子散射行为的预测能力。重点是开发一个模型来捕捉不同尺度(从纳米到微米尺度)的反向散射效应。设计模型的目标是模块化和可扩展性。这种灵活性确保了对未来技术发展的适应性和附加模拟模型的集成。实施过程从一维反向散射模拟开始,然后发展到更复杂的二维模型。这种循序渐进的方法不仅提供了对背散射动力学的基本理解,而且还允许对模型进行迭代细化和验证。接下来是错误分析,其中测试模型的能力。这里证明了多尺度方法的准确性和效率,特别是在后向散射起重要作用的场景中。综上所述,这项工作对半导体制造领域做出了重大贡献,特别是在多光束掩模版写入机写入过程的模拟领域。所开发模型的模块化和可扩展性不仅确保了当前的适用性,而且为该领域未来的发展奠定了基础。
强化学习(RL)已成功地应用于各种在线调整任务,通常优于传统优化方法。但是,无模型的RL算法通常需要大量的样式,训练过程通常涉及数百万个相互作用。由于需要重复此耗时的过程来为每个新任务培训基于RL的控制器,因此它在在线调整任务中更广泛地应用构成了重大障碍。在这项工作中,我们通过扩展域随机化来训练一般的晶格 - 反应政策来应对这一挑战。我们专注于线性加速器中的共同任务:通过控制四极杆和校正磁体的强度来调整电子束的横向位置和尺寸。在训练期间,代理与磁铁位置随机分配的环境相互作用,从而增强了训练有素的策略的鲁棒性。初步结果表明,这种方法使政策能够概括和解决不同晶格部分的任务,而无需进行额外的培训,这表明有可能开发可转移RL的代理。这项研究代表了迈向快速RL部署的第一步,并为加速器系统创建了晶格 - 不合稳定的RL控制器。
Excelitas 应用工程师 Matthias Koppitz 表示:“凭借 30 多年开发激光材料加工光学系统的经验,我们种类繁多的电动 LINOS 扩束器因其能够满足最严格的要求而闻名。” “我们适用于 340 nm-360 nm 波长范围的新型 LINOS 扩束器 1x-4x 延续了这一传统。它更小巧紧凑的尺寸和无色阳极氧化处理可确保满足激光系统对各种紫外线应用制造的光子需求的各个方面。” 适用于 340 nm-360 nm 的新型 LINOS 扩束器 1x-4x 将于 2022 年 6 月 21 日至 23 日在德国斯图加特的 LASYS 上展出(Excelitas 展位号 4E13,4 号厅)。欲了解更多信息,请访问产品网页:https://www.excelitas.com/product/linos- motorized-variable-magnification-beam-expander 。