请简单介绍一下您的研究背景,以及您是如何对多孔材料和 COF 的化学产生兴趣的。我在加州大学洛杉矶分校的 Fraser Stoddart 小组接受了超分子化学家的培训,当时我使用共价键和非共价键来组织电子供体和受体。我的博士后研究是使用点击化学在 Barry Sharpless 的小组中制造超强粘合聚合物。该小组以开创非常传统的有机化学而闻名。后来,该小组对有机反应有了不同的认识,他们使用非常简单但高效的化学方法来制造有用的材料。我认为这是一个非常重要的观点。我从研究生院开始就对有机电子学产生了浓厚的兴趣,搬到伯克利实验室后开始从事该领域的工作。我对 COF 和多孔材料产生了兴趣,因为我觉得这是一个网状平台,可以通过选择适当的构建块和化学方法来操纵电荷载体。我做了很多线性共轭聚合物方面的工作。 COF 是一种有序的高维聚合物系统,具有非常明确的结构控制。特别是 2D COF 让人联想到其他 2D 材料,如石墨烯和过渡金属二硫属化物,其中结构各向异性起着根本作用。这就是我感兴趣并进入该领域的原因。该领域建立在动态共价化学概念之上,这也是我对 COF 感兴趣的另一个原因,因为动态共价化学代表了超分子化学的前沿,也是我的爱好之一。
在没有获批疫苗的情况下,开发有效的 SARS-CoV-2 抗病毒药物对于应对当前因 COVID-19 传播而导致的大流行性健康危机至关重要。由于任何传统的药物发现计划都是一个耗时且昂贵的过程,需要十多年才能完成,因此对现有药物进行计算机模拟再利用是快速选择有希望的临床候选药物的首选方法。在此,我们提出了一项虚拟筛选活动,以识别 SARS-CoV-2 木瓜蛋白酶样蛋白酶 (PLpro) 的共价和非共价抑制剂,这些抑制剂显示出对 COVID-19 治疗的潜在多靶点活性。从 ChEMBL(版本 27.1)下载了一个包含 688 种 III 期和 1702 种 IV 期临床试验药物的数据集,并将其对接到最近发布的 PLpro 与共价结合肽抑制剂复合物的晶体结构上。通过结合蛋白质-配体相互作用指纹相似性、常规对接分数和 MMGBSA 结合自由能对获得的结果进行分析,并确定了一些有趣的候选药物以进行进一步的体外测试。据我们所知,这项研究代表了首次尝试重新利用药物来共价抑制 PLpro,并可能为针对 COVID-19 的新治疗策略铺平道路。
甘油脂质(GL)的物理化学和生物学特性取决于附着在甘油骨架上的脂肪酸(FA)的44个排列和结构。45 GL的传统恢复分析(立体特异性编号,SN-1,2,3)需要46酰基转化为脂肪酸甲基酯(FAME),并通过气体色谱法分析。这些方法表明,大多数生物学48个样品中的天然GL在不同的SN位置具有不同的FA谱,这是由于49的酰基特异性49催化脂解和重新酯化的许多生物合成酶。一个良好的例子是在人和猪牛奶三酰基甘油(TAG)的位置在Sn-51 2位置的独特浓度高含量的棕榈酸(16:0),当大多数天然标签52将其放在SN-1/3的位置时,包括植物油2,3,鱼油4和Ruminant Milks 2。53含棕榈酸在SN-2位置的TAG具有功能性,因为它们在54消化中存活。2 55
2023 年 4 月 15 日 — 源自伦敦色散的不带电原子迫使疏水相互作用 – 不是在 0 K 真空中可测量的真实(物理)相互作用,但...
