摘要:分子靶向放射性核素疗法 (TRT) 难以平衡疗效和安全性,因为目前增加肿瘤吸收的策略通常会改变药物药代动力学以延长血液循环和正常组织照射时间。我们在此报告了第一个共价蛋白 TRT,它通过与靶标发生不可逆反应,增加了肿瘤的放射性剂量,而不会改变药物的药代动力学特征或正常组织的生物分布。通过遗传密码扩展,我们将潜在的生物反应性氨基酸设计成纳米抗体,该抗体与其靶蛋白结合并通过邻近反应形成共价键,在体外、癌细胞和体内肿瘤上不可逆地交联靶标。放射性标记的共价纳米抗体显着增加了肿瘤中的放射性同位素水平并延长了肿瘤的停留时间,同时保持了快速的全身清除。此外,与 α 发射体锕-225 结合的共价纳米抗体比非共价纳米抗体更有效地抑制肿瘤生长,而不会引起组织毒性。这种化学策略将基于蛋白质的 TRT 从非共价模式转变为共价模式,改善了肿瘤对 TRT 的反应,并且可以很容易地扩展到针对广泛肿瘤靶点的多种蛋白质放射性药物。■ 简介
摘要:共价抑制剂在药物设计中正经历着日益复苏的势头,并且成为分子生物学中越来越有用的工具。通过共价键将抑制剂连接到其靶标上的能力提供了药效学和药代动力学优势,但如果不减轻不良的脱靶反应,这也可能是一种负担。因此,在靶向共价抑制剂 (TCI) 的设计中,发现与特定氨基酸残基选择性反应的新亲电基团是非常可取的。此外,通过利用靶酶的机制来控制反应性的能力,如在基于机制的抑制剂 (MBI) 中,极大地受益于新策略的发现。本期观点展示了亲电试剂开发的最新进展及其在对靶标具有高选择性的 TCI 和 MBI 中的应用。
注意:这是作者的作品版本,该作品被接受在《电力杂志》中发表。由出版过程产生的变化,例如同行评审,编辑,校正,结构格式和其他质量控制机制,可能不会反映在本文档中。自从提交出版以来,可能已经对这项工作进行了更改。随后发表了一个确定的版本:J。Power Sounce 196(2011)8696-8700。doi:10.1016/j.jpowsour.2011.06.0333
结果总共有317例CLL或SLL患者接受了pirobrutinib,其中包括以前接受过BTK抑制剂的247例。在这247名患者中,先前治疗线的中位数为3(范围为1至11),100例(40.5%)也接受了B细胞淋巴瘤2(BCL2)抑制剂,例如Venetoclax。对皮尔曲他尼进行总体反应的患者百分比为73.3%(95%置信区间[CI],67.3至78.7),当包括淋巴细胞增多的部分反应时,百分比为82.2%(95%CI,76.8至86.7)。中值无生存期为19.6个月(95%CI,16.9至22.1)。在接受皮尔图略替尼的CLL或SLL的所有317名份量中,最常见的不良事件是感染(以71.0%),出血(42.6%)和中性粒细胞减少症(以32.5%)。在16.5个月的中位治疗持续时间(范围为0.2至39.9)时,通常发生的一些与BTK抑制剂相关的不良事件发生了相对较少的情况,包括高血压(14.2%的患者),心脏纤维化或FLUTTRATION或FLUTTER(3.8%)以及2.2%的大型出血(以2.2%为2.2%)。由于与治疗相关的不良事件,在317名患者中只有9名(2.8%)中断。
1 Huahai US,Inc。,700 Atrium Drive,Somerset,NJ 08873,美国2 Proteco Research,LLC,Po Box 8043,Northfield,IL 60093,USA 3 Biophysics Core,研究资源中心,研究中心,伊利诺伊州伊利诺伊州芝加哥大学,伊利诺伊州芝加哥大学,伊利诺伊州伊利诺伊州60607,Ill Illace of Pranchago of Pranchago of Pranchago of Pranchago of Pranchago of Pranchago Illinina at Chicence of Prancoragagogo美国60607,美国5永久地址:伊利诺伊大学芝加哥大学化学系,伊利诺伊州芝加哥,伊利诺伊州60607,美国6上海协同药物科学科学,1999年Zhangheng Road,第6座建筑物,建筑物,北海北部新区,上海,中国PR中国7 Api Tepartment,Zhejiang Huahai Pharthai Pharmaceical co.U.U. duq co.U.U. duy co.U.U. duia co.linia co. linia co. linia co.lt. lt. lt. lt. lt. lt co.lt. lt lttiald co.lt。 Zhejiang,317076,PR中国
摘要:机器学习 (ML) 识别共价配位位点可能会加速靶向共价抑制剂的设计,并有助于扩大可用药的蛋白质组空间。本文我们报告了基于树的模型和卷积神经网络 (CNN) 的严格开发和验证,这些模型和神经网络是在新近整理的数据库 (LigCys3D) 上训练的,该数据库包含近 800 种蛋白质中的 1,000 多个配位半胱氨酸,由蛋白质数据库中的 10,000 多个三维结构代表。树模型和 CNN 的未见测试分别产生了 94% 和 93% 的 AUC(受试者工作特征曲线下面积)。基于 AlphaFold2 预测的结构,ML 模型以超过 90% 的召回率重现了 PDB 中新配位的半胱氨酸。为了协助共价药物发现社区,我们报告了 392 种人类激酶中预测的可配体半胱氨酸及其在序列比对激酶结构(包括 PH 和 SH2 结构域)中的位置。此外,我们还发布了可搜索的在线数据库 LigCys3D(https://ligcys.computchem.org/)和网络预测服务器 DeepCys(https://deepcys.computchem.org/),这两个数据库都将通过包含新发布的实验数据不断更新和改进。本研究代表了迈向由机器学习主导的大型基因组数据和结构模型集成的第一步,旨在为下一代共价药物发现注释人类蛋白质组空间。
由于其高灵敏度、低毒性、良好的空间和时间分辨率、发射可调、操作简单和非侵入性,它被广泛用于成像。6 用于缺氧成像的荧光探针通常以癌症标志物为目标,特别是与缺氧相关的还原酶。在缺氧肿瘤微环境中,还原酶(如偶氮还原酶和硝基还原酶)过度表达。偶氮基团是对偶氮还原酶敏感的部分,而硝基咪唑是对硝基还原酶敏感的部分。已经开发出各种小分子荧光团用于缺氧条件成像 7 然而,纳米材料由于增强的渗透性和保留 (EPR) 效应而能够实现被动肿瘤积聚和保留。8 这促使人们研究各种用于缺氧成像的纳米材料,9 但非常适合的共价有机框架 (COF) 却被忽视了。由于其纯有机性质、结构和功能可调性、以及可用于药物输送的多孔性,COF 是细胞状况成像的有力候选者。目前仅对少数 COF 进行了生物成像研究,其中细胞成像主要利用材料固有的荧光 10,11 或依靠共轭部分的荧光实现,例如染料标记的核酸 12,13 和荧光探针。14 关于使用 COF 对任何特定细胞状况进行成像的报道更是凤毛麟角。15 在此,我们设计并表征了一种具有硝基还原酶敏感部分的 COF,用于缺氧荧光成像。我们在 b -酮烯胺化学的帮助下合成了一种荧光 COF,16 并在合成后对其进行修饰,以结合硝基咪唑,用于靶向肿瘤缺氧条件下的硝基还原酶。 2-硝基咪唑衍生物是电子缺乏的化合物,已知可作为外源性缺氧标记物,经过生物还原活化后选择性地被缺氧细胞捕获(图 S1,ESI†)。17 由此获得的硝基咪唑 COF(NI-COF)在生理条件下稳定,在中性 pH 和肿瘤组织特有的酸性 pH 水平下均表现出有用的荧光特性,发射峰位于 480 nm(l ex = 420 nm)。利用其低细胞毒性,我们将 NI-COF 用作荧光成像
凌欣宇, 1 , 5 常丽英, 1 , 5 陈鹤琪, 1 高晓琴, 1 尹建航, 2 , 3 左毅, 1 黄玉佳, 1 张波, 4 胡佳芝, 2 , 3 和刘涛 1 , 6 , * 1 北京大学药学院天然药物及仿生药物国家重点实验室, 北京市海淀区学院路 38 号, 100191, 中国 2 北京大学生命科学学院细胞增殖分化教育部重点实验室, 基因组编辑研究中心, 北京 100871, 中国 3 北京大学北大-清华生命科学联合中心, 北京 100871, 中国 4 中国医学科学院北京协和医学院北京协和医院医学研究中心, 北京 100730, 中国 5 上述作者贡献相同 6 主要联系人*通讯地址:taoliupku@pku.edu.cn https://doi.org/10.1016/j.molcel.2021.09.021
摘要:酶的共价抑制剂作为药物种子越来越受到重视,但发现非半胱氨酸靶向抑制剂仍然具有挑战性。在此,我们报告了在基于活性的 1601 个反应性小分子蛋白质组学筛选过程中的一次有趣经历,其中我们监测了库分子与半胱氨酸反应性碘乙酰胺探针竞争的能力。一种环氧分子 F8 表现出对限速糖酵解酶甘油醛-3-磷酸脱氢酶 (GAPDH) 的探针反应性的意外增强。深入的机制分析表明,F8 与活性位点的天冬氨酸形成共价加合物以取代酶的辅因子 NAD + ,同时增强了探针与催化半胱氨酸的反应。机制基础使我们能够识别优化的天冬氨酸反应性 GAPDH 抑制剂。我们的研究结果表明,利用半胱氨酸反应探针进行基于活性的蛋白质组学筛选可用于发现与非半胱氨酸残基反应的共价抑制剂。