摘要 与类风湿性关节炎或系统性硬化症等结缔组织疾病相关的间质性肺病 (ILD) 可统称为系统性自身免疫性风湿病相关 ILD (SARD-ILD) 或风湿性肌肉骨骼疾病相关 ILD。SARD-ILD 导致大量发病率和死亡率,因此,迫切需要针对 SARD-ILD 中纤维化和炎症途径的有效疗法。磷酸二酯酶 4 (PDE4) 水解环磷酸腺苷,而环磷酸腺苷调节参与炎症过程的多种途径。PDE4 在炎症性疾病患者的外周血单核细胞中过度表达。然而,缺乏关于纤维化条件下全 PDE4 抑制的临床数据。PDE4B 亚型在脑、肺、心脏、骨骼肌和免疫细胞中高度表达。因此,抑制 PDE4B 可能成为治疗纤维化 ILD(例如特发性肺纤维化 (IPF) 和 SARD- ILD)的新方法。PDE4B 抑制的临床前数据已初步证明其具有抗炎和抗纤维化活性,并且与泛 PDE4 抑制剂相比,其胃肠道毒性潜力降低。在针对 IPF 患者的概念验证 II 期试验中,与安慰剂相比,目前唯一处于临床开发阶段的 PDE4B 抑制剂 nerandomilast (BI 1015550) 可防止肺功能在 12 周内下降。PDE4B 抑制的潜在临床益处目前正在 III 期试验中进行研究,其中两项试验评估了 nerandomilast 在 IPF 患者(FIBRONEER-IPF)或除 IPF 以外的进行性肺纤维化患者(FIBRONEER-ILD)中的作用。在这里,我们回顾了临床前和临床数据,为 PDE4B 抑制作为 SARD-ILD 患者的治疗策略提供理论依据。
阻力仍然是一个关键问题,限制了靶向RAS的治疗剂的临床益处,并且需要采用组合方法。我们将临床前kras的NSCLC和CRC模型中的持续MTORC1活性确定为对RAS抑制的固有和适应性抗性的频繁的,不固定的驱动力。这种脆弱性可用于Farnesyl转移酶抑制剂KO-2806,它通过RHEB阻止MTORC1激活,同时保留MTORC2及其相关的毒性。将KO-2806添加到NSCLC或CRC肿瘤上,在突变体选择性RAS抑制剂上进展,导致快速耐用的肿瘤退化。相比之下,从突变体选择性转变为PAN-RAS抑制剂单药治疗仅导致NSCLC肿瘤的停滞,对CRC肿瘤进展没有影响。此外,添加KO-2806挽救了肿瘤对PAN-RAS抑制剂RMC-6236的敏感性。我们的结果将MTORC1确定为逃避RAS抑制的重要介体,并在先前的RAS抑制剂暴露患者中突出了KO-2806作为有前途的RAS伴侣抑制剂。
接触依赖性生长抑制 (CDI) 是一种由 CdiA 效应蛋白介导的广泛存在的细菌间竞争形式。CdiA 存在于抑制剂细胞表面,并在接触时将其有毒的 C 末端区域 (CdiA-CT) 传递到邻近的细菌中。抑制剂细胞还会产生 CdiI 免疫蛋白,这些蛋白可中和 CdiA-CT 毒素以防止自我抑制。在这里,我们描述了一组不同的 CDI 离子载体毒素,它们会消散目标细菌中的跨膜电位。这些 CdiA-CT 毒素由基于 AlphaFold2 建模的两个不同域组成。C 末端离子载体域都预测会形成能够跨越细胞膜的五螺旋束。N 末端“进入”域的结构各不相同,似乎劫持了不同的整合膜蛋白,以促进毒素组装到脂质双层中。大肠杆菌分离株部署的 CDI 离子载体根据其进入域结构分为六大类。比较序列分析鉴定出第 1 组和第 3 组(AcrB)、第 2 组(SecY)和第 4 组(YciB)的离子载体毒素受体蛋白。利用正向遗传学方法,我们鉴定出第 5 组和第 6 组离子载体的新受体。第 5 组利用由 puuP 和 plaP 编码的同源腐胺输入蛋白,第 6 组毒素识别由旁系同源 dtpA 和 dtpB 基因编码的二肽/三肽转运蛋白。最后,我们发现离子载体结构域表现出显著的组内序列变异,特别是在预测与 CdiI 相互作用的位置。因此,相应的免疫蛋白也具有高度多态性,通常与同一组的成员仅共享约 30% 的序列同一性。竞争实验证实,免疫蛋白对其同源离子载体具有特异性,无法抵御来自同一组的其他毒素。这种蛋白质相互作用网络的特异性为大肠杆菌分离株之间的自体/非自体识别提供了一种机制。
简介 1 型糖尿病 (T1D) 的发病机制涉及胰岛内多种细胞类型之间的复杂相互作用,包括先天免疫细胞(巨噬细胞、树突状细胞)、胰岛素分泌细胞(β 细胞)和适应性免疫细胞(T 细胞、B 细胞)(1)。尽管传统上认为该疾病是由免疫耐受的原发性缺陷引起的,但一种新兴观点认为,环境因素(如病毒或其他全身性炎症性疾病)可能会加剧巨噬细胞和 β 细胞之间的相互作用,促进 β 细胞中的氧化和内质网 (ER) 应激途径 (2–4)。这些途径促进 β 细胞新表位的产生,进而引发适应性自身免疫 (5, 6)。疾病改良疗法(改变疾病发病机制而不是纠正潜在疾病表型的疗法)主要集中于适应性免疫系统,并在临床试验中取得了一些成功。例如,针对活化 T 细胞的抗 CD3 单克隆抗体 (teplizumab) 已被证明可将高危人群的 1 型糖尿病发病时间延迟长达 2 年 (7)。鉴于先天免疫细胞和 β 细胞在 1 型糖尿病早期发病机制中的作用越来越受到重视,针对这些细胞类型的药物的鉴定提出了联合治疗方法可能提供更持久疗效的可能性。脂氧合酶 (LOX) 包含一个参与脂质代谢的酶家族,可促进多不饱和脂肪酸的氧合形成二十烷酸,其中一些具有促炎性质 (8)。在小鼠中,12/15-LOX 由 Alox15 基因编码,是巨噬细胞和 β 细胞中存在的主要活性 LOX,并产生促炎性二十烷酸 12-羟基二十碳四烯酸 (12-HETE) 作为底物花生四烯酸的主要产物 (9)。 Alox15 的整体删除
作为 Hippo 信号通路的核心致瘤下游效应物,YAP/TAZ 和 TEAD 转录因子家族代表了癌症研究中药物发现工作的有吸引力的目标。在胸膜间皮瘤的背景下尤其如此,其中有许多最近的临床前发展和临床试验评估了 TEAD 抑制剂的疗效。抑制剂的范围显示出巨大的前景,但迄今为止对其性能的比较有限。在这里,我们开发了一个高内容管道,可以对目前开发的 YAP/TAZ-TEAD 抑制剂进行比较分析。我们利用同源细胞模型,使我们能够检查抑制剂的特异性。我们确定了 Hippo 通路转录模块的遗传补偿,这对治疗靶向有影响,并实施细胞绘画以开发详细的形态分析管道,从而可以进一步表征、量化和分析脱靶效应。我们的管道是可扩展的,使我们能够在临床相关细胞模型中建立癌症相关检测中的特异性和比较效力。
移植物抗宿主病(GVHD)是同种异性造血干细胞移植(HSCT)后发病和死亡率的重要原因。多年来,皮质类固醇一直是GVHD的主要治疗方法,但是类固醇难治性GVHD的病例和高剂量皮质类固醇的严重不利影响增加了对GVHD的预防和治疗策略的需求。由于同种反应性T细胞的性质,GVHD与移植物 - 抗链球菌(GVL)效应(干细胞移植背后的治疗驱动力)固有地联系在一起。一个巨大的临床挑战是在抑制GVHD的同时保留GVL。在过去的几十年中,GVHD研究领域已大大扩展,包括T细胞调节和耗竭的进步,抗体疗法,化学治疗药,细胞疗法和Janus激酶抑制作用。在这篇综述中,我们讨论了预防和治疗GVHD的当前方法和进步,重点是Janus激酶抑制剂治疗的新新兴进步。
摘要 结直肠癌 (CRC) 是美国癌症相关死亡的第二大原因,高危人群根据其遗传背景患上 CRC 的可能性明显更高。因此,迫切需要创新的化学预防治疗,以尽量减少 CRC 肿瘤发生。 输出蛋白 1 (XPO1;也称为 CRM1) 在将蛋白质从细胞核运输到细胞质中起着关键作用。各种癌症都过度表达 XPO1,包括 CRC,而核输出选择性抑制剂 (SINE) 化合物,如 Eltanexor (KPT- 8602),已被开发用于靶向 XPO1。Eltanexor 表现出的副作用比其前体少,目前正在进行 I/II 期临床试验评估。本研究评估了 Eltanexor 作为 CRC 化学预防剂的效果。我们的研究结果表明,Eltanexor 治疗可抑制 CRC 中常见的化学预防靶点环氧合酶-2 (COX-2) 的表达。这是通过 Eltanexor 依赖性 Wnt/β-catenin 信号传导减少实现的。此外,XPO1 抑制会导致叉头转录因子 O 亚家族成员 3a (FoxO3a) 核滞留,从而调节 β-catenin/TCF 转录活性。对 Apc min/+ 小鼠(家族性腺瘤息肉病的小鼠模型)进行体内口服 Eltanexor 治疗耐受性良好,可将肿瘤负担减少约 3 倍,同时减小肿瘤大小。使用来自 Apc min/+ 小鼠肿瘤的类器官进行的药物敏感性测定显示,与野生型类器官相比,对 Eltanexor 的敏感性增加。总之,这些发现突出了 XPO1 是 CRC 化学预防的有力靶点。意义 在本研究中,我们表明 XPO1 抑制剂 Eltanexor 通过调节 Wnt/β-catenin 信号通路降低 COX-2,并在家族性腺瘤性息肉 (FAP) 小鼠模型 Apc min/+ 小鼠中充当有效的化学预防剂。 引言 在美国,CRC 是美国第二大癌症死亡原因,影响男性和女性。美国癌症协会预测,2024 年将有 53,010 人死于 CRC [1]。这些统计数据凸显了对抗 CRC 的新治疗方法的明确需求。这种需求尤其由于 CRC 的患病率,预计年轻人中的患病率会上升。与 1950 年出生的人相比,1990 年出生的人患结肠癌的风险是 2 倍 [2]。年轻人除了一生中更容易患上 CRC 之外,他们也更有可能在早期患上 CRC。自 1994 年以来,由于多种风险因素,早发性 CRC(50 岁以下的个体)的发病率每年增加约 2% [3]。除了偶尔患上 CRC 外,患有家族性腺瘤性息肉病 (FAP) 等疾病的人由于遗传的种系突变而容易患上 CRC [4] 。对于被诊断患有 FAP 的个体,临床医生建议他们从 10-12 岁开始每年进行一次结肠镜检查。对于 FAP 患者来说,CRC 的风险是 100%,因此,迫使许多患者接受结肠切除术以预防 CRC [5] 。鉴于这些患者面临的 CRC 风险较高
癌细胞可塑性是三阴性乳腺癌 (TNBC) 化疗和靶向治疗失败的重要原因。治疗诱导的肿瘤细胞可塑性和相关耐药性的分子机制在很大程度上是未知的。使用全基因组 CRISPR-Cas9 筛选,我们研究了用 γ 分泌酶抑制剂 (GSI) 治疗的 NOTCH 驱动的 TNBC 的逃逸机制,并确定 SOX2 是 Notch 抑制耐药性的靶点。我们描述了 Notch 信号和 SOX2 之间的一种新型相互抑制反馈机制。具体而言,Notch 信号通过其 HEY 家族的靶基因抑制 SOX2 表达,而 SOX2 通过与 RBPJ 直接相互作用抑制 Notch 信号。这种机制形成了不同的细胞状态,其中 NOTCH 阳性 TNBC 更像上皮细胞,而 SOX2 表达与上皮-间质转化相关,诱导癌症干细胞特征和 GSI 耐药性。为了抵消单药治疗引起的肿瘤复发,我们分别评估了 GSI-紫杉醇和达沙替尼-紫杉醇联合治疗对 NOTCH 抑制剂敏感和耐药的 TNBC 异种移植的效果。这些独特的预防组合和二线治疗方案依赖于 TNBC 中的 NOTCH1 和 SOX2 表达,能够诱导肿瘤生长控制并减少转移负担。
摘要 在疼痛发生之前,仅仅因为有疼痛威胁,疼痛相关的运动适应就可能被预测性地激活。然而,在人类中,预期疼痛的运动适应背后的神经生理机制仍然知之甚少。我们追踪了健康成年人学会预测上肢单侧肌肉特定疼痛发生时皮质脊髓兴奋性 (CSE) 变化的演变。使用巴甫洛夫威胁条件反射任务,不同的视觉刺激预测了右前臂或左前臂(实验 1)或手(实验 2)的疼痛。在疼痛发生前的刺激呈现期间,在左侧初级运动皮层施加单脉冲经颅磁刺激以探测 CSE 并从目标右前臂和手部肌肉诱发运动诱发电位。还评估了参与者的特质焦虑与 CSE 之间的相关性。结果表明,疼痛威胁会触发皮质脊髓抑制,特别是在预期出现疼痛的肢体中。此外,皮质脊髓抑制相对于受到威胁的肌肉进行调节,前臂疼痛威胁会抑制前臂和手部肌肉,而手部疼痛威胁仅抑制手部肌肉。最后,皮质脊髓抑制越强,焦虑特质就越强。这些结果推进了对疼痛过程的机制理解,表明疼痛相关的运动适应是在仅仅受到疼痛威胁时发生的,作为一系列预期的、拓扑组织的运动变化,这些变化与预期的疼痛有关,并受个人焦虑水平的影响。将这种预期的运动变化纳入疼痛模型可能会带来新的疼痛相关疾病治疗方法。
DNA 聚合酶 theta (Polθ) 是一种参与 DNA 双链断裂 (DSB) 修复的酶。Polθ 包含一个 N 端 ATPase 驱动的 DNA 解旋酶结构域和一个 C 端 DNA 聚合酶结构域,它们协同作用,通过 theta 介导的末端连接 (TMEJ) 修复 DSB。在大多数情况下,Polθ 活性不是必需的,因为同源重组 (HR) 是修复 DNA 复制过程中出现的 DSB 的首选途径。然而,HR 介导的 DNA 修复所需的基因通常在肿瘤中发生突变或缺失,导致 DSB 修复和细胞存活严重依赖 Polθ 介导的 TMEJ。MOMA-313 是一种新型、有效且选择性的 Polθ 解旋酶活性抑制剂,旨在利用 HR 缺陷型肿瘤受损的 DNA 修复能力来获得潜在的治疗益处。