NEMS 技术在环境传感领域得到广泛应用,可用于监测空气质量、检测污染物和评估环境条件。这些传感器可以高灵敏度和高精度地检测微量气体、颗粒物和挥发性有机化合物,有助于污染控制和公共卫生管理。此外,基于 NEMS 的天气传感器可以精确测量温度、湿度和大气压力,有助于气候监测和天气预报。
学术行为和支持系统声明 学术行为 剽窃——将他人的观点当作自己的观点,无论是逐字逐句还是用自己的话重述——都是严重的学术违规行为,后果严重。请熟悉 SCampus 第 11 节“违反大学标准的行为”中关于剽窃的讨论 https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions/。其他形式的学术不诚实行为同样不可接受。有关 SCampus 和大学关于科学不端行为的政策的更多信息,请参阅 http://policy.usc.edu/scientific-misconduct/。大学不容忍歧视、性侵犯和骚扰。我们鼓励您向公平与多元化办公室 http://equity.usc.edu/ 或公共安全部 http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us 报告任何事件。这对于整个 USC 社区的安全非常重要。大学社区的其他成员(例如朋友、同学、顾问或教职员工)可以帮助发起报告,也可以代表其他人发起报告。妇女和男子中心 http://www.usc.edu/student-affairs/cwm/ 提供 24/7 保密支持,性侵犯资源中心网页 sarc@usc.edu 介绍了报告选项和其他资源。支持系统 USC 的许多学院为需要学术写作帮助的学生提供支持。请咨询您的顾问或项目工作人员以了解更多信息。母语不是英语的学生应咨询美国语言学院 http://dornsife.usc.edu/ali,该学院专门为国际研究生提供课程和讲习班。残疾人服务和项目办公室 http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html 为残疾学生提供认证并帮助安排相关住宿。如果官方宣布的紧急情况导致无法前往校园,南加州大学紧急信息 http://emergency.usc.edu/ 将提供安全和其他更新,包括如何通过黑板、电话会议和其他技术继续教学。
目标 提供有关 MEMS 技术和制造的基本知识。 课程目标 本课程应使学生能够: 1. 了解微制造的演变。 2. 学习各种制造技术。 3. 了解微传感器和微执行器。 4. 学习各种微执行器的设计。 第一单元简介(9 小时) 基本定义 – 微制造的演变 – 微系统和微电子学,缩放定律:静电力、电磁力、结构刚度、流体力学和传热的缩放。 第二单元微传感器(9 小时) 简介 – 微传感器:生物医学传感器和生物传感器 – 化学传感器 – 光学传感器 – 压力传感器 – 热传感器、声波传感器。 第三单元微执行器(9 小时) 微驱动:使用热力、压电晶体、静电力进行驱动。基于 SMA 的微执行器,微执行器:微夹钳、微电机、微阀门、微泵、微加速度计 - 微流体。第四单元 MEMS 制造技术(9 小时)MEMS 材料:硅、硅化合物、压电晶体、聚合物微系统制造工艺:光刻、离子注入、扩散、氧化、CVD、溅射、蚀刻技术。第五单元微加工(9 小时)微加工:体微加工、表面微加工、LIGA 工艺。封装:微系统封装、基本封装技术、封装材料选择。
传感器采用 MEMS 技术(微机电系统),本质上是一个硅电容器。电容器由两个硅板/表面组成。一个板是固定的,而另一个是可移动的(分别是下图中所示的绿色板和灰色板)。固定表面由电极覆盖,使其具有导电性,并布满了允许声音通过的声孔。可移动板能够移动,因为它只粘合在其结构的一侧。通风孔允许后室中压缩的空气流出,从而允许膜向后移动。腔室允许膜在内部移动,但与封装创建的腔室结合也会影响麦克风在频率响应和 SNR 方面的声学性能。
已经开发出一种用于制造和组装三维 MEMS 结构的新型多晶硅表面微加工技术。已成功在硅基板上制造了包含玻璃增强肋的单层多晶硅元件和层压多晶硅面板,这些面板具有坚固且连续的铰链,便于平面外旋转和组装。为了实现稳定的三维结构,该设备的其中一个可升降面板组件以一排开窗结束,而配合的可旋转元件具有一组匹配的突出微铆钉,这些微铆钉具有可弯曲的倒钩,这些倒钩易于弯曲以方便它们的连接和组装。由于微铆钉倒钩尖端之间的间距大于配合窗口中的开口,因此倒钩在穿过开窗时会向内弯曲,然后在离开窗口时展开到其原始形状,从而形成永久锁定的接头和三维结构。利用该技术已经开发出一种机械夹钳,它将用于与有可能植入人体的聚合物镜片连接并改变其焦点。将传统微电子技术与三维微动态机械元件无缝集成是微机电系统 (MEMS) 技术的突出目标之一。传统的微电子集成电路 (IC) 处理主要是二维制造技术。另一方面,许多 MEMS 微传感器和微执行器应用需要三维元件。由于 MEMS 技术是 IC 处理的延伸,因此主要挑战是实现在所有三个维度上都具有物理上较大和高分辨率特征的机械元件。大多数常见的 IC 制造工艺要么牺牲平面分辨率来换取深度,要么牺牲垂直特征尺寸来实现高平面分辨率。
一开始,惯性测量单元是一种电子设备,它使用加速度计、陀螺仪和磁力计的组合来测量和报告飞行器的速度、方向和重力。现在,惯性测量单元通常用于人机交互 (HCI)、导航目的和平衡技术,众所周知,Segway 个人运输车就是使用这种技术。
起初,惯性测量单元是一种电子设备,它使用加速度计、陀螺仪和磁力计的组合来测量和报告飞行器的速度、方向和重力。现在,惯性测量单元通常用于人机交互 (HCI)、导航目的和平衡技术,众所周知,Segway 个人运输车就是使用这种技术。