目标 提供有关 MEMS 技术和制造的基本知识。 课程目标 本课程应使学生能够: 1. 了解微制造的演变。 2. 学习各种制造技术。 3. 了解微传感器和微执行器。 4. 学习各种微执行器的设计。 第一单元简介(9 小时) 基本定义 – 微制造的演变 – 微系统和微电子学,缩放定律:静电力、电磁力、结构刚度、流体力学和传热的缩放。 第二单元微传感器(9 小时) 简介 – 微传感器:生物医学传感器和生物传感器 – 化学传感器 – 光学传感器 – 压力传感器 – 热传感器、声波传感器。 第三单元微执行器(9 小时) 微驱动:使用热力、压电晶体、静电力进行驱动。基于 SMA 的微执行器,微执行器:微夹钳、微电机、微阀门、微泵、微加速度计 - 微流体。第四单元 MEMS 制造技术(9 小时)MEMS 材料:硅、硅化合物、压电晶体、聚合物微系统制造工艺:光刻、离子注入、扩散、氧化、CVD、溅射、蚀刻技术。第五单元微加工(9 小时)微加工:体微加工、表面微加工、LIGA 工艺。封装:微系统封装、基本封装技术、封装材料选择。
•构建以通过机电或电化学手段实现特定的工程功能或功能•包含尺寸为1 µm至1mm的组件。可用的mems产品包括:•微传感器(声波,生物医学,化学,惯性,光学,压力,辐射,热,热等)•微执行器(阀门,泵和微流体;电气和光学继电器和开关;握手,镊子和钳子;线性和旋转电动机等)•在计算机存储系统中读/写头。•喷墨打印机头。•微型设备组件(例如,棕榈门侦察飞机,迷你机器人和玩具,微手术和移动电信设备等)
T.-M. Băjenescu,tmbajenesco@gmail.com 收稿日期:2019 年 2 月 8 日 接受日期:2019 年 3 月 15 日 摘要。如今,灵活性意味着生产价格合理、质量上乘的定制产品,并能快速交付给客户。本文分析了与物理相关的问题,这些问题能够产生缺陷,影响 MEMS(微机电系统)的可靠性极限。无论 MEMS 行业的未来前景多么美好,它目前所处的位置都比表面上看起来要脆弱得多。要研究纳米器件的最终可靠性极限,需要全面了解缺陷产生的物理和统计数据。最大的挑战:成本效益高、大批量生产。关键词:工艺误差,MEMS,光学MEMS,故障分析,MEMS开关,封装开裂,故障机制,可靠性,蠕变,寿命预测。1.简介 在开发先进的MEMS封装时,必须注意和理解以下几点:MEMS器件和MEMS封装的基础设施尚未完善;MEMS封装专业知识并不普遍;MEMS封装是独一无二的和定制的;MEMS通用封装平台技术尚不可用;MEMS器件需要密封;某些MEMS器件甚至需要真空封装;采用硅通孔(TSV)的垂直电馈通成本仍然太高。封装经常被称为“MEMS制造的致命弱点”,是MEMS商业化过程中的一个关键瓶颈。除了少数完全商业化的产品(即气囊触发器、喷墨打印头、压力传感器和一些医疗设备)外,封装是成本的最大单一因素,也是小型化潜力的主要限制因素 [1]。除非完全封装,否则 MEMS 产品是不完整的。目前,封装是导致 MEMS 产品开发时间长和成本高的主要技术障碍之一。封装涉及将:(a) 各种组成部分的大量设计几何形状整合在一起;(b) 连接不同的材料;(c) 提供所需的输入/输出连接,以及 (d) 优化所有这些以获得性能、成本和可靠性。
定期进行。通常,作业将在一个主题(章节)的第一次讲座中布置,并在新主题开始时交。希望您的作业代表您自己的工作,尽管允许甚至鼓励小组合作。项目:将分配一个设计项目。我们鼓励您提出自己的项目主题并与讲师讨论。对于您的项目,您需要进行广泛的文献综述,分析您选择的 MEMS 设备,并将结果包含在您的项目报告中,该报告将采用 IEEE 格式。您将在课堂上进行 10-15 分钟的 Power Point 项目演示。对于研究生(ECE 6370),您需要对您选择的 MEMS 设备进行 COMSOL 仿真分析或实验性 MEMS 设备测试。结果预计将包含在您的项目报告和演示文稿的模拟结果中。对于 ECE 4370 学生,我们鼓励(但不要求)您进行 COMSOL 模拟或实验。课程项目的更多详细信息将在课堂上提供。
印度空间研究组织 (ISRO) 在其维克拉姆·萨拉巴伊航天中心 (VSSC) 开发了一种 MEMS 声学传感器技术。该传感器用于监测卫星运载火箭发射期间产生的声级。它是一种内置电子设备的压电 MEMS 传感器。MEMS 技术使微型设备能够精确批量制造。该传感器可在恶劣环境下工作,并能经受振动测试、冲击测试、湿度测试、温度浸泡测试。这是第一个在印度运载火箭上进行飞行测试的自主开发的 MEMS 传感器,具有 12 次连续 PSLV 飞行的运行记录。突出特点 突出特点 突出特点 突出特点 • 体相微加工硅振膜,硅上带有压电感应层 • 范围:100 至 180dB(2Pa 至 20KPa) • 频率范围:31.5Hz 至 6.3KHz,1/3 倍频程中心频率 • 灵敏度:150 至 200uV/Pa
微机电系统(MEMS)是指一组微秒和执行器,它们能够感知其环境,并能够通过微电路控制对环境的变化做出反应。除了传统的微电子封装外,它们还包括将用于命令信号的天线结构集成到微机电结构中,以实现所需的传感和致动功能。该系统还可能需要微电源、微继电器和微信号处理单元。微元件使系统更快、更可靠、更便宜,并能够集成更复杂的功能。20世纪90年代初,MEMS随着集成电路(IC)制造工艺的发展而出现,其中传感器、执行器和控制功能在硅片上共制。此后,在政府和工业界的大力推动下,MEMS的研究取得了显著进展。除了一些集成度较低的 MEMS 器件(如微加速度计、喷墨打印机头、投影微镜等)的商业化外,更复杂的 MEMS 器件的概念和可行性也已提出并得到验证,可用于微流体、航空航天、生物医学、化学分析、无线通信、数据存储、显示、光学等各个领域 [1,2]。MEMS 的一些分支,如微光机电系统 (MOEMS)、微全分析系统 (µ TAS) 等,由于其潜在的应用市场,已经吸引了大量的研究兴趣。截至
MEMS 技术已广泛应用于消费电子、汽车工业、航空航天和生物医疗设备等众多领域。在消费电子领域,MEMS 传感器(如加速度计和陀螺仪)用于智能手机和平板电脑的方向感测和运动跟踪。在汽车工业中,MEMS 传感器用于安全气囊系统、轮胎压力监测系统和电子稳定控制系统等,以提高安全性和性能。在航空航天工业中,MEMS 传感器用于导航系统、惯性测量单元和振动监测系统,以提高飞机的性能和可靠性。