• 全球亚热带和温带地区干旱期的频率和长度正在增加。表观遗传对水分胁迫的反应可能是植物抵御这些难以预测的挑战的关键。实验性 DNA 去甲基化与应激因子的应用相结合是揭示表观遗传学对植物应激反应贡献的适当策略。• 在温室中,我们分析了用 5-氮杂胞苷对种子进行去甲基化和/或反复受水胁迫后,一年生地中海草本植物 Erodium cicutarium 成年植株叶片胞嘧啶甲基化的变化。我们使用亚硫酸盐 RADseq (BsRADseq) 和新报道的 E. cicutarium 参考基因组,以 2 9 2 因子设计表征甲基化变化,控制植物相关性。 • 从长期来看,仅用 5-氮杂胞苷处理会导致单个胞嘧啶的低甲基化和高甲基化,在 CG 环境中会出现显著的低甲基化。在对照条件下,干旱导致除 CHH 环境中所有环境中的甲基化减少。相反,经历反复水胁迫并用 5-氮杂胞苷处理的植物的基因组使 DNA 甲基化水平增加约 5%。• 种子去甲基化和反复干旱在整体和特定环境中的胞嘧啶甲基化方面产生了高度显著的相互作用。大多数甲基化变化发生在基因区域周围和转座因子内。这些与基因相关的差异甲基化区域的注释包括几个在应激反应中具有潜在作用的基因(例如 PAL、CDKC 和 ABCF),证实了表观遗传在分子水平上应对应激的贡献。
海洋酸化会显着影响牡蛎等海洋钙化剂,保证研究分子机制(如DNA甲基化),这些机制响应环境变化而导致自适应可塑性。然而,在海洋无脊椎动物中,甲基化模块基因表达和可塑性的程度尚未达成共识。在这项研究中,我们研究了PCO 2对基因表达和DNA甲基化的影响,在牡蛎crassostrea virginica中。暴露于30天的对照(572 ppm)或升高的PCO 2(2,827 ppm)后,由成年雌性性腺组织和雄性精子样本产生了整个基因组Bisulfite测序(WGB)和RNA-SEQ数据。尽管在女性(89)和雄性(2,916)中鉴定出差异化甲基化的基因座(DML),但没有差异表达的基因,并且在女性中只有一个差异表达的转录本。然而,基因体甲基化影响了精子中其他形式的基因活性,例如每个基因表达的最大转录本数以及表达的主要转录本的变化。升高的PCO 2暴露增加了男性基因表达变异性(转录噪声),但女性的噪声降低,表明甲基化在基因表达调节中的性别特异性作用。对转录级表达变化或含有DML的基因的功能注释显示,有几个富集的生物学过程可能参与了升高的PCO 2响应,包括凋亡途径和信号转导,以及生殖功能。综上所述,这些结果表明,DNA甲基化可能调节基因表达变异性,以维持升高的PCO 2条件下的稳态,并且可能在海洋无脊椎动物的环境弹性中发挥关键作用。
摘要:由于人为活性,海洋的汞含量(HG)含量增加了两倍,尽管黑海洋(> 200 m)已成为重要的HG储层,但有毒和生物蓄积的甲基汞(MEHG)的浓度很低,因此很难测量。因此,当前对深海中HG周期的理解受到严格的数据限制,控制MEHG的因素及其转换率仍然很大程度上未知。通过分析52个全球分布的巴基拉质深元素宏基因组和26个来自Malaspina Expedition的新元转录组,我们的研究揭示了在全球浴类海洋中(〜4000 m深度)中细菌编码基因Mera和Merb的广泛分布和表达。这些基因与Hg II还原和MEHG脱甲基化相关的基因在粒子附着的分数中尤为普遍。此外,我们的结果表明,水质量年龄和有机物组成塑造了拥有Mera和Merb基因的结构,这些群落和Merb基因生活在不同的粒径分数,其丰度及其表达水平。命令的成员Corynebacteriales,Rhodobacterales,Alteromonadales,Oceanospirillales,Moraxelleles和Flavobacteriales是深海中包含Mera和Merb基因的主要分类参与者。这些发现,加上我们先前具有具有代谢能力降解MEHG的深层层流海洋的纯培养物分离株的结果,表明甲基汞脱甲基化和HG II还原可能发生在全球黑暗海洋中,这是生物圈中最大的生物组。关键字:汞,甲基汞,浴样,细菌脱甲基化,宏基因组,metatranscriptomes,mer基因■简介
Mendelian疾病是由单个遗传基因座中的致病性变异引起的,通常表现为神经发育障碍(NDDS),影响了全球大部分儿科种群。这些疾病以非典型的大脑发育,智力残疾和各种相关的表型特征为特征。基因测试有助于临床诊断,但尚无定论的结果可以延长确认过程。最近对表观遗传失调的关注导致发现与NDD相关的DNA甲基化特征或发作性,从而加速了诊断精度。值得注意的是,参与泛素化途径的基因Trip12和USP7表现出特定的情节。了解这些基因在泛素化途径中的作用阐明了它们对情节形成的潜在影响。Trip12充当E3连接酶,USP7充当去泛素酶,在泛素化中呈现了对比的作用。比较这些基因致病性变异患者的表型性状既揭示了区别和共同点,从而提供了对潜在的病理生理机制的见解。本综述将Trip12和USP7在泛素化途径中的作用,它们对情节形成的影响以及对NDD发病机理的潜在影响。理解这些复杂的关系可能会揭示NDD的新型治疗靶标和诊断策略。
5-甲基胞嘧啶 (5mC) 是一种广泛存在的沉默机制,可控制基因组寄生虫。在真核生物中,5mC 在寄生虫控制之外的基因调控中发挥着复杂的作用,但 5mC 也在许多谱系中丢失了。5mC 保留的原因及其基因组后果仍不太清楚。在这里,我们表明与动物密切相关的原生生物阿帕拉契变形虫具有转座子和基因体甲基化,这种模式让人联想到无脊椎动物和植物。出乎意料的是,变形虫中高甲基化的基因组区域源自病毒插入,包括数百种内源化巨型病毒,占蛋白质组的 14%。使用抑制剂和基因组分析的组合,我们证明 5mC 可以抑制这些巨型病毒插入。此外,替代的变形虫分离株显示出多态性巨型病毒插入,突显了感染、内源化和清除的动态过程。我们的结果表明,5mC 对于新获得的病毒 DNA 与真核生物基因组的受控共存至关重要,这使得变形虫成为了解真核生物 DNA 混合起源的独特模型。
参考(1)fu,l。; niu,b。 Z。Z。; Wu,S。; Li,W。序列分析CD-HIT:加速用于聚类下一代测序数据。2012,28(23),3150–3152。https://doi.org/10.1093/bioinformatics/BTS565。 (2)Boyd,E。S。; Barkay,T。汞电阻操纵子:从地热环境中的起源到有效的排毒机。 Front Microbiol 2012,3(10月),349。https://doi.org/10.3389/fmicb.2012.00349。 (3)Pitts,K。E。;萨默斯,A。O。 硫醇在细菌有机灰裂(MERB)中的作用。 生物化学2002,41(32),10287–10296。 https://doi.org/10.1021/bi0259148。 (4)Kozlov,A。M。;达里巴(Darriba),d。面粉,t。;莫雷尔,b。 Stamatakis,A。Raxml-NG:一种快速,可扩展和用户友好的工具,可用于最大似然系统发育推断。 生物信息学2019,35(21),4453–4455。 https://doi.org/10.1093/bioinformatics/btz305。 (5)Christakis,C。A。; Barkay,T。;博伊德(E. S. 前微生物2021,12,682605。https://doi.org/10.3389/fmicb.2021.682605/full。https://doi.org/10.1093/bioinformatics/BTS565。(2)Boyd,E。S。; Barkay,T。汞电阻操纵子:从地热环境中的起源到有效的排毒机。Front Microbiol 2012,3(10月),349。https://doi.org/10.3389/fmicb.2012.00349。(3)Pitts,K。E。;萨默斯,A。O。硫醇在细菌有机灰裂(MERB)中的作用。生物化学2002,41(32),10287–10296。https://doi.org/10.1021/bi0259148。 (4)Kozlov,A。M。;达里巴(Darriba),d。面粉,t。;莫雷尔,b。 Stamatakis,A。Raxml-NG:一种快速,可扩展和用户友好的工具,可用于最大似然系统发育推断。 生物信息学2019,35(21),4453–4455。 https://doi.org/10.1093/bioinformatics/btz305。 (5)Christakis,C。A。; Barkay,T。;博伊德(E. S. 前微生物2021,12,682605。https://doi.org/10.3389/fmicb.2021.682605/full。https://doi.org/10.1021/bi0259148。(4)Kozlov,A。M。;达里巴(Darriba),d。面粉,t。;莫雷尔,b。 Stamatakis,A。Raxml-NG:一种快速,可扩展和用户友好的工具,可用于最大似然系统发育推断。生物信息学2019,35(21),4453–4455。https://doi.org/10.1093/bioinformatics/btz305。 (5)Christakis,C。A。; Barkay,T。;博伊德(E. S. 前微生物2021,12,682605。https://doi.org/10.3389/fmicb.2021.682605/full。https://doi.org/10.1093/bioinformatics/btz305。(5)Christakis,C。A。; Barkay,T。;博伊德(E. S.前微生物2021,12,682605。https://doi.org/10.3389/fmicb.2021.682605/full。
特发性肺纤维化(IPF)是一种慢性,进行性和不可逆的间质性肺疾病,预后比肺癌差。这是一种致命的肺部疾病,其病因学和发病机理在很大程度上,没有有效的治疗药物会导致其治疗在很大程度上失败。随着连续的深度研究工作,IPF发病机理中的表观遗传机制得到了进一步发现和关注。作为广泛研究的表观遗传修饰机制,DNA甲基化主要由DNA甲基转移酶(DNMTS)促进,从而导致甲基添加到胞质碱基的五碳位置中,从而导致5-甲基胞糖苷(5-MC)的形成。DNA甲基化的失调与呼吸系统疾病的发展相关。最近,DNA甲基化在IPF发病机理中的作用也受到了相当大的关注。DNA甲基化模式包括甲基化修饰和脱甲基化的修饰,并通过基因表达调节调节一系列必需的生物学功能。通过修饰的基因组基碱基5-MC对5-羟基甲基胞嘧啶(5-HMC)的酶促转化,DNA二加氧酶的十个二十一酶家族对于促进活性DNA去甲基化至关重要。TET2,TET蛋白的成员,参与肺炎症,其蛋白表达在IPF患者的肺和肺泡上皮II型细胞中下调。本综述总结了肺纤维化的病理特征和DNA甲基化机制的当前知识,重点介绍了异常DNA甲基化模式,DNMT和TET蛋白在影响IPF病原体中的关键作用。研究DNA甲基化将基于涉及表观遗传机制的研究提供对IPF病理学的基本机制的理解,并为肺纤维化提供新颖的诊断生物标志物和治疗靶标。
美国西北,巴黎,巴黎的巴黎大学,巴黎大学,美国西奈山的法国医学院西澳大利亚州内德兰兹,西澳大利亚州内德兰兹医院,西澳大利亚大学,西澳大利亚大学,西澳大利亚州克劳利,6009,澳大利亚h默西亚大学,新南威尔士大学,澳大利亚新南威尔士大学,澳大利亚J肥胖研究单位,临床和分子分子代谢研究计划,伦敦基金会,丹麦·赫尔斯基大学,丹麦克大学,临床与分子代谢研究计划, M vrije Univeriteit Amsterdam生物心理学系美国西北,巴黎,巴黎的巴黎大学,巴黎大学,美国西奈山的法国医学院西澳大利亚州内德兰兹,西澳大利亚州内德兰兹医院,西澳大利亚大学,西澳大利亚大学,西澳大利亚州克劳利,6009,澳大利亚h默西亚大学,新南威尔士大学,澳大利亚新南威尔士大学,澳大利亚J肥胖研究单位,临床和分子分子代谢研究计划,伦敦基金会,丹麦·赫尔斯基大学,丹麦克大学,临床与分子代谢研究计划, M vrije Univeriteit Amsterdam生物心理学系美国西北,巴黎,巴黎的巴黎大学,巴黎大学,美国西奈山的法国医学院西澳大利亚州内德兰兹,西澳大利亚州内德兰兹医院,西澳大利亚大学,西澳大利亚大学,西澳大利亚州克劳利,6009,澳大利亚h默西亚大学,新南威尔士大学,澳大利亚新南威尔士大学,澳大利亚J肥胖研究单位,临床和分子分子代谢研究计划,伦敦基金会,丹麦·赫尔斯基大学,丹麦克大学,临床与分子代谢研究计划, M vrije Univeriteit Amsterdam生物心理学系美国西北,巴黎,巴黎的巴黎大学,巴黎大学,美国西奈山的法国医学院西澳大利亚州内德兰兹,西澳大利亚州内德兰兹医院,西澳大利亚大学,西澳大利亚大学,西澳大利亚州克劳利,6009,澳大利亚h默西亚大学,新南威尔士大学,澳大利亚新南威尔士大学,澳大利亚J肥胖研究单位,临床和分子分子代谢研究计划,伦敦基金会,丹麦·赫尔斯基大学,丹麦克大学,临床与分子代谢研究计划, M vrije Univeriteit Amsterdam生物心理学系
此版本的版权所有者于2024年5月24日发布。 https://doi.org/10.1101/2023.09.24.234.23295907 doi:medrxiv preprint
通过实现遍及表观基因组的性状关联的发现,无花果DNA甲基化beadchip显着促进了种群规模的表观遗传学研究。在这里,我们设计,描述和实验验证了该技术的新迭代,即甲基化筛选阵列(MSA),以关注人类性状筛查和发现。此阵列利用了先前基于Infinium平台的整个表观基因组协会研究(EWAS)的大量数据。它结合了最新的单细胞和细胞类型 - 整个基因组甲基谱的知识。MSA经过设计,以实现超高样品吞吐量中表观遗传学特征关联的可扩展筛选。我们的设计涵盖了各种人类性状关联,包括具有遗传,细胞,环境和人口统计学变量以及人类疾病(例如遗传,神经退行性,心血管,感染性和免疫疾病)的人类疾病。我们全面评估了该阵列的可重复性,准确性和能力,用于细胞型反卷积和支持5-羟基甲基化分析。我们使用此平台的第一个图集数据发现了与人类表型相关的DNA修饰变化和遗传变异的复杂染色质和组织环境。